We have studied the probe gain via a double-Λ atomic system with a pair of closely lying lower levels in the presence of two probe and two coherent pump fields. The inversionless gain can be realized by using nondege...We have studied the probe gain via a double-Λ atomic system with a pair of closely lying lower levels in the presence of two probe and two coherent pump fields. The inversionless gain can be realized by using nondegenerate four-wave mixing under the condition of spontaneously generated coherence(SGC) owing to near-degenerate lower levels. Note that by using SGC, two probe fields can be amplified with more remarkable amplitudes, and the gain spectra of an extremely narrow linewidth can be obtained. Last but not least, our results show that the probe gain is quite sensitive to relative phases due to the SGC presence which allows one to modulate the gain spectra periodically by phase modulation, and can also be influenced by all laser field intensities and frequencies, and the angles between dipole elements.展开更多
The effect of delay time on photoelectron spectra and state populations of a four-level ladder K2 molecule is investigated by a pump1–pump2–probe pulse via the time-dependent wave packet approach. The periodical mot...The effect of delay time on photoelectron spectra and state populations of a four-level ladder K2 molecule is investigated by a pump1–pump2–probe pulse via the time-dependent wave packet approach. The periodical motion of the wave packet leads to the periodical change of the photoelectron spectra. The Autler–Townes triple splitting appears at zero delay time, double splitting appears at nonzero delay time between pump1 and pump2 pulses, and no splitting appears at nonzero delay time between pump2 and probe pulses. The periodical change of the state populations with the delay time may be due to the coupling effect between the two pulses. It is found that the selectivity of the state populations may be attained by regulating the delay time. The results can provide an important basis for realizing the optical control of molecules experimentally.展开更多
Wave packet dynamics of the Li2 molecule are investigated by using the time-dependent quantum wave packet method, and the time-resolved photoelectron spectra of the Li2 molecule are calculated. The time-resolved wave ...Wave packet dynamics of the Li2 molecule are investigated by using the time-dependent quantum wave packet method, and the time-resolved photoelectron spectra of the Li2 molecule are calculated. The time-resolved wave packet theory is used to reasonably interpret the phenomena of the photoelectron spectra for different parameters. Our calculation shows that the loss of the wave packets in the shelf state area of E1∑g+ plays a prominent role in the process of photoionization with the increase of the delay time. Moreover, the oscillation of the wave packet on the E1∑g+ curve symbolizes a decreasing process of energy.展开更多
By using two-parallel conductance probes,the instantaneous film thickness of gas-liquidtwo-phase flow within a horizontal plexiglass pipe of 50mm inner diameter was experimentallymeasured.The pipe was 6680mm long.Seve...By using two-parallel conductance probes,the instantaneous film thickness of gas-liquidtwo-phase flow within a horizontal plexiglass pipe of 50mm inner diameter was experimentallymeasured.The pipe was 6680mm long.Several wave patterns were distinguished through statisticalanalysis of signals of film thicknesses.Wave pattern maps were obtained and compared with resultsof former studies.The characteristics of the interfacial waves,such as time-averaged film thickness,wave height,wave propagation speed,wavelength and wave frequency,were systematically investigated.The effect of the exit structure of the test section on interfacial waves was experimentally examined.展开更多
Plasma absorption probe (PAP) was developed for measuring the electron density in plasmas processing based on the surface-wave characteristics. In order to diagnose the plasma with lower density and higher pressure,...Plasma absorption probe (PAP) was developed for measuring the electron density in plasmas processing based on the surface-wave characteristics. In order to diagnose the plasma with lower density and higher pressure, a sensitive PAP was also developed. Both types of PAP were analyzed theoretically under the quasi-static approximation, which is highly problematic when a conductor exists in the resonance region of the probe. For this reason, a theoretical model for the PAP is presented in this paper. The model is derived from the electromagnetic wave equation. Its principle is then verified via experiments and numerical simulations. Both experimental and numerical results show that the electromagnetic theoretical model is valid as compared with the quasi-static model. Consequently, a new type of PAP, named as the electromagnetic PAP, is thus proposed for the measurement of electron density.展开更多
To detect the real-time plasma plume during pulse wave Nd:YAG laser welding, experimental studies were conducted based on asynchronous signal acquisition system. The electrical signals of the laser-induced plasma plum...To detect the real-time plasma plume during pulse wave Nd:YAG laser welding, experimental studies were conducted based on asynchronous signal acquisition system. The electrical signals of the laser-induced plasma plume were obtained by a passive acquisition system. The plume was directly observed and recorded using synchronous high-speed camera. The results showed that the waveform of the signals was in accordance with the periodical laser power. The signals decreased after the laser was turned on and fl uctuated relatively steadily on the stable stage and then increased to 0 V after the laser beam was turned off . The decreasing time of the electrical signals was roughly 1.0 ms, and it decreased with the increasing peak power. However, the average power had insignifi cant eff ect on the signal decreasing time.展开更多
基金Project supported by the Natural Science Foundation of Hainan Province,China(Grant Nos.20151005,20151015,and 20161006)the National Natural Science Foundation of China(Grant Nos.11247005,51262007,11501153,and 41564006)+2 种基金the Postdoctoral Scientific Research Program of Jilin Province,China(Grant No.RB201330)the Project Sponsored by Science Research Foundation for Returned Overseas Chinese Scholarsthe Fundamental Research Funds for the Central Universities,China(Grant No.12QNJJ006)
文摘We have studied the probe gain via a double-Λ atomic system with a pair of closely lying lower levels in the presence of two probe and two coherent pump fields. The inversionless gain can be realized by using nondegenerate four-wave mixing under the condition of spontaneously generated coherence(SGC) owing to near-degenerate lower levels. Note that by using SGC, two probe fields can be amplified with more remarkable amplitudes, and the gain spectra of an extremely narrow linewidth can be obtained. Last but not least, our results show that the probe gain is quite sensitive to relative phases due to the SGC presence which allows one to modulate the gain spectra periodically by phase modulation, and can also be influenced by all laser field intensities and frequencies, and the angles between dipole elements.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704178 and 11764041)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.15B204)
文摘The effect of delay time on photoelectron spectra and state populations of a four-level ladder K2 molecule is investigated by a pump1–pump2–probe pulse via the time-dependent wave packet approach. The periodical motion of the wave packet leads to the periodical change of the photoelectron spectra. The Autler–Townes triple splitting appears at zero delay time, double splitting appears at nonzero delay time between pump1 and pump2 pulses, and no splitting appears at nonzero delay time between pump2 and probe pulses. The periodical change of the state populations with the delay time may be due to the coupling effect between the two pulses. It is found that the selectivity of the state populations may be attained by regulating the delay time. The results can provide an important basis for realizing the optical control of molecules experimentally.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60977063 and 10574039)the Foundation for Key Program of Ministry of Education China (Grant No. 206084)+1 种基金the Innovation Scientists and Technicians Troop Construction Projects of Henan Province,China (Grant No. 084100510011)the Innovation Talents of Institution of Higher Education of Henan Province,China (Grant No. 2006KYCX002)
文摘Wave packet dynamics of the Li2 molecule are investigated by using the time-dependent quantum wave packet method, and the time-resolved photoelectron spectra of the Li2 molecule are calculated. The time-resolved wave packet theory is used to reasonably interpret the phenomena of the photoelectron spectra for different parameters. Our calculation shows that the loss of the wave packets in the shelf state area of E1∑g+ plays a prominent role in the process of photoionization with the increase of the delay time. Moreover, the oscillation of the wave packet on the E1∑g+ curve symbolizes a decreasing process of energy.
基金Supported by the National Natural Science Foundation of China.
文摘By using two-parallel conductance probes,the instantaneous film thickness of gas-liquidtwo-phase flow within a horizontal plexiglass pipe of 50mm inner diameter was experimentallymeasured.The pipe was 6680mm long.Several wave patterns were distinguished through statisticalanalysis of signals of film thicknesses.Wave pattern maps were obtained and compared with resultsof former studies.The characteristics of the interfacial waves,such as time-averaged film thickness,wave height,wave propagation speed,wavelength and wave frequency,were systematically investigated.The effect of the exit structure of the test section on interfacial waves was experimentally examined.
基金supported by National Natural Science Foundation of China (Nos.10675121, 10705028 and 10605025)National Basic Research Program of China (No.2008CB717800)
文摘Plasma absorption probe (PAP) was developed for measuring the electron density in plasmas processing based on the surface-wave characteristics. In order to diagnose the plasma with lower density and higher pressure, a sensitive PAP was also developed. Both types of PAP were analyzed theoretically under the quasi-static approximation, which is highly problematic when a conductor exists in the resonance region of the probe. For this reason, a theoretical model for the PAP is presented in this paper. The model is derived from the electromagnetic wave equation. Its principle is then verified via experiments and numerical simulations. Both experimental and numerical results show that the electromagnetic theoretical model is valid as compared with the quasi-static model. Consequently, a new type of PAP, named as the electromagnetic PAP, is thus proposed for the measurement of electron density.
基金supported by the Natural Science Foundation of Tianjin (No. 16JCZDJC38700)
文摘To detect the real-time plasma plume during pulse wave Nd:YAG laser welding, experimental studies were conducted based on asynchronous signal acquisition system. The electrical signals of the laser-induced plasma plume were obtained by a passive acquisition system. The plume was directly observed and recorded using synchronous high-speed camera. The results showed that the waveform of the signals was in accordance with the periodical laser power. The signals decreased after the laser was turned on and fl uctuated relatively steadily on the stable stage and then increased to 0 V after the laser beam was turned off . The decreasing time of the electrical signals was roughly 1.0 ms, and it decreased with the increasing peak power. However, the average power had insignifi cant eff ect on the signal decreasing time.