The hydroelastic interaction of an incident wave with a semi-infinite horizontal elastic plate floating on a homogenous fluid of finite depth is analyzed using the eigenfunction expansion method. The fluid is assumed ...The hydroelastic interaction of an incident wave with a semi-infinite horizontal elastic plate floating on a homogenous fluid of finite depth is analyzed using the eigenfunction expansion method. The fluid is assumed to be inviscid and incompressible and the wave amplitudes are assumed to be small. A two-dimensional problem is formulated within the framework of linear potential theory. The fluid domain is divided into two regions, namely an open water region and a plate-covered region. In this paper, the orthogonality property of eigenfunctions in the open water region is used to obtain the set of simultaneous equations for the expansion coefficients of the velocity potentials and the edge conditions are included as a part of the equation system. The results indicate that the thickness and the density of plate have almost no influence on the reflection and transmission coefficients. Numerical analysis shows that the method proposed here is effective and has higher convergence than the previous results.展开更多
This paper reports a series solution of wave functions for two-dimensional scattering and diffraction of plane SH waves induced by a symmetrical V-shaped canyon with different shape ratios. A half-space with a symmetr...This paper reports a series solution of wave functions for two-dimensional scattering and diffraction of plane SH waves induced by a symmetrical V-shaped canyon with different shape ratios. A half-space with a symmetrical V-shaped canyon is divided into two sub-regions by using a circular-arc auxiliary boundary. The two sub-regions are represented by global and local cylindrical coordinate systems, respectively. In each coordinate system, the wave field satisfying the Helmholtz equation is represented by the separation of variables method, in terms of the series of both Bessel functions and Hankel functions with unknown complex coefficients. Then, the two wave fields are described in the local coordinate system using the Graf addition theorem. Finally, the unknown coefficients are sought by satisfying the continuity conditions of the auxiliary boundary. To consider the phase characteristics of the wave scattering, a parametric analysis is carried out in the time domain by assuming an incident signal of the Ricker type. Surface and subsurface transient responses demonstrate the characteristics and mechanisms of wave propagating and scattering.展开更多
Boundary Collocation Method (BCM) based on Eigenfunction Expansion Method (EEM), a new numerical method for solving two-dimensional wave problems, is developed. To verify the method, wave problems on a series of b...Boundary Collocation Method (BCM) based on Eigenfunction Expansion Method (EEM), a new numerical method for solving two-dimensional wave problems, is developed. To verify the method, wave problems on a series of beaches with different geometries are solved, and the errors of the method are analyzed. The calculation firmly confirms that the results will be more precise if we choose more rational points on the beach. The application of BCM, available for the problems with irregular domains and arbitrary boundary conditions, can effectively avoid complex calculation and programming. It can be widely used in ocean engineering.展开更多
The present study deals with the scattering of oblique surface water waves by small undulation on the bottom in the presence of a thin vertical barrier. Here, three different configurations of vertical barriers are in...The present study deals with the scattering of oblique surface water waves by small undulation on the bottom in the presence of a thin vertical barrier. Here, three different configurations of vertical barriers are investigated. Perturbation analysis is employed to determine the physical quantities, namely, the reflection and transmission coefficients. In this analysis, many different Boundary Value Problems (BVPs) are obtained out of which the first two bvps are considered. The zeroth order bvp is solved with the aid of eigenfunction expansion method. The first order reflection and transmission coefficients are derived in terms of the integrals by the method of the Green's integral theorem. The variation of these coefficients is plotted and analyzed for different physical parameters. Furthermore, the energy balance relation, an important relation in the study of water wave scattering, is derived and checked for assuring the correctness of the numerical results for the present problem.展开更多
Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expans...Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expansion method is used to obtain the diffraction and radiation solutions when the converter width tends to be infinity. The trapezoidal section of the converter is approximated by a rectangular section for simplification. The nonlinear viscous damping effects are accounted for by including a drag term in the two- and three-dimensional methods. It is found that the three- dimensional results are in good agreement with the two-dimensional results when the converter width becomes larger, especially when the converter width is infinity, which shows that both of the methods are reasonable. Meantime, it is also found that the peak value of the conversion efficiency decreases as the converter width increases in short wave periods while increases when the converter width increases in long wave periods.展开更多
基金supported by the Innovation Program of Shanghai Municipal Education Commission (Grant No. 09YZ04)the State Key Laboratory of Ocean Engineering (Grant No. 0803)the Shanghai Rising-Star Program (Grant No. 07QA14022)
文摘The hydroelastic interaction of an incident wave with a semi-infinite horizontal elastic plate floating on a homogenous fluid of finite depth is analyzed using the eigenfunction expansion method. The fluid is assumed to be inviscid and incompressible and the wave amplitudes are assumed to be small. A two-dimensional problem is formulated within the framework of linear potential theory. The fluid domain is divided into two regions, namely an open water region and a plate-covered region. In this paper, the orthogonality property of eigenfunctions in the open water region is used to obtain the set of simultaneous equations for the expansion coefficients of the velocity potentials and the edge conditions are included as a part of the equation system. The results indicate that the thickness and the density of plate have almost no influence on the reflection and transmission coefficients. Numerical analysis shows that the method proposed here is effective and has higher convergence than the previous results.
基金National Natural Science Foundation of China Under Grant No.51278382
文摘This paper reports a series solution of wave functions for two-dimensional scattering and diffraction of plane SH waves induced by a symmetrical V-shaped canyon with different shape ratios. A half-space with a symmetrical V-shaped canyon is divided into two sub-regions by using a circular-arc auxiliary boundary. The two sub-regions are represented by global and local cylindrical coordinate systems, respectively. In each coordinate system, the wave field satisfying the Helmholtz equation is represented by the separation of variables method, in terms of the series of both Bessel functions and Hankel functions with unknown complex coefficients. Then, the two wave fields are described in the local coordinate system using the Graf addition theorem. Finally, the unknown coefficients are sought by satisfying the continuity conditions of the auxiliary boundary. To consider the phase characteristics of the wave scattering, a parametric analysis is carried out in the time domain by assuming an incident signal of the Ricker type. Surface and subsurface transient responses demonstrate the characteristics and mechanisms of wave propagating and scattering.
基金financially supported by the Special Fund for Marine Renewable Energy Projects(Grant Nos.GHME2010GC01 and GHME2013ZB01)the National Natural Science Foundation of China(Grant Nos.51109201 and 41106031)
文摘Boundary Collocation Method (BCM) based on Eigenfunction Expansion Method (EEM), a new numerical method for solving two-dimensional wave problems, is developed. To verify the method, wave problems on a series of beaches with different geometries are solved, and the errors of the method are analyzed. The calculation firmly confirms that the results will be more precise if we choose more rational points on the beach. The application of BCM, available for the problems with irregular domains and arbitrary boundary conditions, can effectively avoid complex calculation and programming. It can be widely used in ocean engineering.
基金Supported by SERB-DST Grant(No.SB/FTP/MS-034/2013)
文摘The present study deals with the scattering of oblique surface water waves by small undulation on the bottom in the presence of a thin vertical barrier. Here, three different configurations of vertical barriers are investigated. Perturbation analysis is employed to determine the physical quantities, namely, the reflection and transmission coefficients. In this analysis, many different Boundary Value Problems (BVPs) are obtained out of which the first two bvps are considered. The zeroth order bvp is solved with the aid of eigenfunction expansion method. The first order reflection and transmission coefficients are derived in terms of the integrals by the method of the Green's integral theorem. The variation of these coefficients is plotted and analyzed for different physical parameters. Furthermore, the energy balance relation, an important relation in the study of water wave scattering, is derived and checked for assuring the correctness of the numerical results for the present problem.
基金supported by the Special Fund for Marine Renewable Energy of the Ministry of Finance of China(No.GD2010ZC02)
文摘Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expansion method is used to obtain the diffraction and radiation solutions when the converter width tends to be infinity. The trapezoidal section of the converter is approximated by a rectangular section for simplification. The nonlinear viscous damping effects are accounted for by including a drag term in the two- and three-dimensional methods. It is found that the three- dimensional results are in good agreement with the two-dimensional results when the converter width becomes larger, especially when the converter width is infinity, which shows that both of the methods are reasonable. Meantime, it is also found that the peak value of the conversion efficiency decreases as the converter width increases in short wave periods while increases when the converter width increases in long wave periods.