In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of t...In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion ...We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and O, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively.展开更多
We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. By using extended F-expansion method, many periodic wave solutions expressed by v...We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. By using extended F-expansion method, many periodic wave solutions expressed by various Jacobi elliptic functions for the Klein-Gordon-Schrodinger equations are obtained. In the limit cases, the solitary wave solutions and trigonometric function solutions for the equations are also obtained.展开更多
In this paper, based on new auxiliary nonlinear ordinary differential equation with a sixtb-aegree nonnneal term, we study the (2+l )-dimensional Davey-Stewartson equation and new types of travelling wave solutions...In this paper, based on new auxiliary nonlinear ordinary differential equation with a sixtb-aegree nonnneal term, we study the (2+l )-dimensional Davey-Stewartson equation and new types of travelling wave solutions are obtained, which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions, and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.展开更多
The new analytical travelling wave solutions to the generalized Kuramoto Sivashinsky (K S) equation were obtained by introducing a special transformation.
In this work, while applying a new and novel (G'/G)-expansion version technique, we identify four families of the traveling wave solutions to the (1 + 1)-dimensional compound KdVB equation. The exact solutions are...In this work, while applying a new and novel (G'/G)-expansion version technique, we identify four families of the traveling wave solutions to the (1 + 1)-dimensional compound KdVB equation. The exact solutions are derived, in terms of hyperbolic, trigonometric and rational functions, involving various parameters. When the parameters are tuned to special values, both solitary, and periodic wave models are distinguished. State of the art symbolic algebra graphical representations and dynamical interpretations of the obtained solutions physics are provided and discussed. This in turn ends up revealing salient solutions features and demonstrating the used method efficiency.展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particu...The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schrodinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schrodinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.展开更多
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present...The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.展开更多
By making use of extended mapping method and auxiliary equation for finding new periodic wave solu tions of nonlinear evolution equations in mathematical physics, we obtain some new periodic wave solutions for general...By making use of extended mapping method and auxiliary equation for finding new periodic wave solu tions of nonlinear evolution equations in mathematical physics, we obtain some new periodic wave solutions for generalized Klein-Cordon equation and Benjamin equation, which cannot be found in previous work. This method also can be used to find new periodic wave solutions of other nonlinear evolution equations.展开更多
Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutio...Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.展开更多
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The...This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.展开更多
With symbolic computation, the Hirota method and Riemann theta function are employed to directly construct the periodic wave solutions for the Hirota-Satsuma equation for shallow water waves and Boiti-Leon-Manna- Pemp...With symbolic computation, the Hirota method and Riemann theta function are employed to directly construct the periodic wave solutions for the Hirota-Satsuma equation for shallow water waves and Boiti-Leon-Manna- Pempinelli equation. Then, the corresponding figures of the periodic wave solutions are given. Fhrthermore, it is shown that the known soliton solutions can be reduced from the periodic wave solutions.展开更多
In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete ...In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete example,several solitary wave and periodic wave solutions for the chain which is related to the relativistic Toda lattice are derived.Some systems of the differential-difference equations that can be solved using our approach are listed and a discussion is given in conclusion.展开更多
In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pr...In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the validity and the advantages of the method, (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some e...In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some exact explicit travelling solitary wave solutions for the above equation are obtained. As a result, some minor errors and some known results in the previousl literature are clarified and improved.展开更多
In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution ...In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.展开更多
Based on the Stokes wave theory, the capillary-gravity wave and the interfacial internal wave in two-layer constant depth's fluid system are investigated. The fluids are assumed to be incompressible, inviscid and irr...Based on the Stokes wave theory, the capillary-gravity wave and the interfacial internal wave in two-layer constant depth's fluid system are investigated. The fluids are assumed to be incompressible, inviscid and irrotational. The third-order Stokes wave solutions are given by using a perturbation method. The results indicate that the third-order solutions depend on the surface tension, the density and the depth of each layer. As expected, the first-order solutions are the linear theoretical results (the small amplitude wave theoretical results). The second-order and the third-order solutions describe the nonlinear modification and the nonlinear interactions. The nonlinear impact appears not only in the n (n〉~2) times' high frequency components, but also in the low frequency components. It is also noted that the wave velocity depends on the wave number, depth, wave amplitude and surface tension.展开更多
文摘In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金河南省自然科学基金,河南省教育厅自然科学基金,the Science Foundation of Henan University of Science and Technology
文摘We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and O, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively.
基金The project supported by the Natural Science Foundation of Eduction Committce of Henan Province of China under Grant No. 2003110003, and the Science Foundation of Henan University of Science and Technology under Grant Nos. 2004ZD002 and 2004ZY040
文摘We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. By using extended F-expansion method, many periodic wave solutions expressed by various Jacobi elliptic functions for the Klein-Gordon-Schrodinger equations are obtained. In the limit cases, the solitary wave solutions and trigonometric function solutions for the equations are also obtained.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘In this paper, based on new auxiliary nonlinear ordinary differential equation with a sixtb-aegree nonnneal term, we study the (2+l )-dimensional Davey-Stewartson equation and new types of travelling wave solutions are obtained, which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions, and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.
文摘The new analytical travelling wave solutions to the generalized Kuramoto Sivashinsky (K S) equation were obtained by introducing a special transformation.
文摘In this work, while applying a new and novel (G'/G)-expansion version technique, we identify four families of the traveling wave solutions to the (1 + 1)-dimensional compound KdVB equation. The exact solutions are derived, in terms of hyperbolic, trigonometric and rational functions, involving various parameters. When the parameters are tuned to special values, both solitary, and periodic wave models are distinguished. State of the art symbolic algebra graphical representations and dynamical interpretations of the obtained solutions physics are provided and discussed. This in turn ends up revealing salient solutions features and demonstrating the used method efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金supported by the National Natural Science Foundation of China (Grant No. 11675054)the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213)the Project of Science and Technology Commission of Shanghai Municipality (Grant No. 18dz2271000)。
文摘The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schrodinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schrodinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.
基金Supported by the International Cooperation and Exchanges Foundation of Henan Province (084300510060)the Youth Science Foundation of Henan University of Science and Technology of China (2008QN026)
文摘The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.
基金The project supported by the Natural Science Foundation of Anhui Province of China under Grant No. 01041188 and the Foundation of Classical Courses of Anhui Province
文摘By making use of extended mapping method and auxiliary equation for finding new periodic wave solu tions of nonlinear evolution equations in mathematical physics, we obtain some new periodic wave solutions for generalized Klein-Cordon equation and Benjamin equation, which cannot be found in previous work. This method also can be used to find new periodic wave solutions of other nonlinear evolution equations.
基金The project supported by National Natural Science Foundation of China under Grant No.10771196the Natural Science Foundation of Zhejiang Province under Grant No.Y605044
文摘Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.
基金Project supported by the National Science Fund for Distinguished Young Scholars (Grant No 40425015), the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore oil Corporation ("Behaviours of internal waves and their roles on the marine structures") and the National Natural Science Foundation of China (Grant No10461005).
文摘This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics,by the National Basic Research Program of China (973 Program) under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20060006024 and 200800130006,Chinese Ministry of Education
文摘With symbolic computation, the Hirota method and Riemann theta function are employed to directly construct the periodic wave solutions for the Hirota-Satsuma equation for shallow water waves and Boiti-Leon-Manna- Pempinelli equation. Then, the corresponding figures of the periodic wave solutions are given. Fhrthermore, it is shown that the known soliton solutions can be reduced from the periodic wave solutions.
文摘In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete example,several solitary wave and periodic wave solutions for the chain which is related to the relativistic Toda lattice are derived.Some systems of the differential-difference equations that can be solved using our approach are listed and a discussion is given in conclusion.
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB318000)
文摘In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the validity and the advantages of the method, (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
基金supported by the Research Foundation of Education Bureau of Hubei Province,China (Grant No Z200612001)the Natural Science Foundation of Yangtze University (Grant No 20061222)
文摘In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some exact explicit travelling solitary wave solutions for the above equation are obtained. As a result, some minor errors and some known results in the previousl literature are clarified and improved.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675084 and 11435005)the Fund from the Educational Commission of Zhejiang Province,China(Grant No.Y201737177)+1 种基金Ningbo Natural Science Foundation(Grant No.2015A610159)the K C Wong Magna Fund in Ningbo University
文摘In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.
基金financially supported by the Science Research Project of Inner Mongolia University of Technology,China(Grant No.ZD201613)
文摘Based on the Stokes wave theory, the capillary-gravity wave and the interfacial internal wave in two-layer constant depth's fluid system are investigated. The fluids are assumed to be incompressible, inviscid and irrotational. The third-order Stokes wave solutions are given by using a perturbation method. The results indicate that the third-order solutions depend on the surface tension, the density and the depth of each layer. As expected, the first-order solutions are the linear theoretical results (the small amplitude wave theoretical results). The second-order and the third-order solutions describe the nonlinear modification and the nonlinear interactions. The nonlinear impact appears not only in the n (n〉~2) times' high frequency components, but also in the low frequency components. It is also noted that the wave velocity depends on the wave number, depth, wave amplitude and surface tension.