In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and alg...In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example, and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.展开更多
基金This project is supported by National Natural Science Foundation of China (No.10504006, No.50575063).
文摘In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example, and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.