期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Inverting the rock mass P-wave velocity field ahead of deep buried tunnel face while borehole drilling
1
作者 Liu Liu Shaojun Li +5 位作者 Minzong Zheng Dong Wang Minghao Chen Junbo Zhou Tingzhou Yan Zhenming Shi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期681-697,共17页
Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detect... Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging. 展开更多
关键词 Deep buried tunnel wave velocity field Borehole drilling Tomography Rock mass
下载PDF
基于人工边界条件的波面相位解析重建
2
作者 刘晓蕾 尹弘栗 +2 位作者 韩博宇 马学文 张云驰 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第1期101-112,共12页
At present,the measurement of the near wave field of ships mostly relies on shipborne radar.The commonly used shipborne radar is incoherent and cannot obtain information on wave surface velocity.Therefore,the mathemat... At present,the measurement of the near wave field of ships mostly relies on shipborne radar.The commonly used shipborne radar is incoherent and cannot obtain information on wave surface velocity.Therefore,the mathematical model of wave reconstruction is remarkably complex.As a new type of radar,coherent radar can obtain the radial velocity of the wave surface.Most wave surface reconstruction methods that use wave velocity are currently based on velocity potential.The difficulty of these methods lies in determining the initial value of the velocity integral.This paper proposes a wave surface reconstruction method based on an artificial boundary matrix.Numerical simulation data of regular and short-crest waves are used to verify the accuracy of this method.Simultaneously,the reconstruction stability under different wave velocity measurement errors is analyzed.The calculation results show that the proposed method can effectively realize the reconstruction of wave field. 展开更多
关键词 Coherent radar wave velocity field Artificial boundary matrix wave surface reconstruction Calculation stability
下载PDF
Analysis of shock wave reflection from fixed and moving boundaries using a stabilized particle method
3
作者 Hassan Ostad Soheil Mohammadi 《Particuology》 SCIE EI CAS CSCD 2009年第5期373-383,共11页
In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid bounda... In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries. 展开更多
关键词 CSPM Meshfree particle method Shock wave propagation and reflection Moving boundaries Compressible fluids velocity field smoothing stabilization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部