This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employ...This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.展开更多
A new set of relative orbit elements (ROEs) is used to derive a new elliptical formation flying model in previous work. In-plane and out-of-plane relative motions can be completely decoupled, which benefits elliptical...A new set of relative orbit elements (ROEs) is used to derive a new elliptical formation flying model in previous work. In-plane and out-of-plane relative motions can be completely decoupled, which benefits elliptical formation design. In order to study the elliptical control strategy and perturbation effects, it is necessary to derive the inverse transformation of the relative state transition matrix based on relative orbit elements. Poisson bracket theory is used to obtain the linear transformations between the two representations: the relative orbit elements and the geocentric orbital frame. In this paper, the details of these transformations are presented.展开更多
The objective of this article is to provide a novel extension of the conventional inverse Weibull distribution that adds an extra shape parameter to increase its flexibility.This addition is beneficial in a variety of...The objective of this article is to provide a novel extension of the conventional inverse Weibull distribution that adds an extra shape parameter to increase its flexibility.This addition is beneficial in a variety of fields,including reliability,economics,engineering,biomedical science,biological research,environmental studies,and finance.For modeling real data,several expanded classes of distributions have been established.The modified alpha power transformed approach is used to implement the new model.The datamatches the new inverseWeibull distribution better than the inverse Weibull distribution and several other competing models.It appears to be a distribution designed to support decreasing or unimodal shaped distributions based on its parameters.Precise expressions for quantiles,moments,incomplete moments,moment generating function,characteristic generating function,and entropy expression are among the determined attributes of the new distribution.The point and interval estimates are studied using the maximum likelihood method.Simulation research is conducted to illustrate the correctness of the theoretical results.Three applications to medical and engineering data are utilized to illustrate the model’s flexibility.展开更多
The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-bac...The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.展开更多
One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equatio...One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equations of Cauchy integral satisfy the Lax equations. Such a basic problem still exists in the procedure of deriving the dark soliton solutions of the NLS equation in normal dispersion with non-vanishing boundary conditions through the inverse scattering transform. In this paper, a pair of Jost solutions with same analytic properties are composed to be a 2 × 2 matrix and then another pair are introduced to be its right inverse confirmed by the Liouville theorem. As they are both 2 × 2 matrices, the right inverse should be the left inverse too, based upon which it is not difficult to show that these Jost solutions satisfy both the first and second Lax equations. As a result of compatibility condition, the dark soliton solutions definitely satisfy the NLS equation in normal dispersion with non-vanishing boundary conditions.展开更多
Since the Jost solutions of the DNLS equation does not tend to the free Jost solutioins as |λ|→∞, the usual inverse scattering transform (IST) must be revised. Beside the Kaup and Newell's approach, we propose...Since the Jost solutions of the DNLS equation does not tend to the free Jost solutioins as |λ|→∞, the usual inverse scattering transform (IST) must be revised. Beside the Kaup and Newell's approach, we propose a simple revision in constructing the equations of IST, where the usual Zakharov-Shabat kern is revised by multiplying λ^-2 or λ^-1. To justify the revision we show that the Jost solutions obtained do satisfy the pair of compatibility equations.展开更多
N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse sca...N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse scatteringtransform.展开更多
Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fo...Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fourier transform related to the electromagnetic response in the frequency and time domains becomes a sine or cosine transform under the excitation of downward-step current.We established a transformation matrix based on the digital fi ltering calculation for the sine transform,and then the frequency domain projection of the TEM data was determined from the linear transformation system using the smoothing constrained least squares inversion method,in which only the imaginary part was used to maintain the TEM data transformation equivalence in the bidirectional projection.Thus,the time-domain TEM inversion problem was indirectly and effectively solved in the frequency domain.In the 3D inversion of the transformed frequency-domain data,the limited-memory Broyden–Fletcher–Goldfarb–Shannoquasi–Newton(L-BFGS)method was used and modifi ed with a restart strategy to adjust the regularization parameter when the algorithm tended to a local minimum.Synthetic data tests showed that our domain transformation method can stably project the TEM data into the frequency domain with very high accuracy;furthe rmore,the 3D inversion of the transformed frequency-domain data is stable,can be used to recover the real resistivity model with an acceptable effi ciency.展开更多
A new method for receiver function inversion by wavelet transformation is presented in this paper. Receiver func-tion is expanded to different scales with different resolution by wavelet transformation. After an initi...A new method for receiver function inversion by wavelet transformation is presented in this paper. Receiver func-tion is expanded to different scales with different resolution by wavelet transformation. After an initial model be-ing taken, a generalized least-squares inversion procedure is gradually carried out for receiver function from low to high scale, with the inversion result for low order receiver function as the initial model for high order. A neighborhood containing the global minimum is firstly searched from low scale receiver function, and will gradu-ally focus at the global minimum by introducing high scale information of receiver function. With the gradual ad-dition of high wave-number to smooth background velocity structure, wavelet transformation can keep the inver-sion result converge to the global minimum, reduce to certain extent the dependence of inversion result on the initial model, overcome the nonuniqueness of generalized least-squares inversion, and obtain reliable crustal and upper mantle velocity with high resolution.展开更多
A new reflection approach for field distribution measurement of ultrasonic transducers was investigated. Instead of a point-like reflection target (rigid sphere) or thin wires (line-like targets), a line response ...A new reflection approach for field distribution measurement of ultrasonic transducers was investigated. Instead of a point-like reflection target (rigid sphere) or thin wires (line-like targets), a line response function of experimental knife-edge distribution combined with the inverse Abel transforms was used to estimate the lateral beam distributions of ultrasonic transducers. The measurement steps were as follows:① A knife-edge was scanned perpendicularly to acoustic beam axis of the transducer using an ultrasonic C-scan system to obtain its ultrasonic image line response function, ② the transverse beam distribution was solved by the inverse Abel transforms, and ③ experiments were performed to obtain the lateral beam profiles of two transducers, with and without focus, and the results were compared with those from a hydrophone. The results showed that this method was effective for ultrasonic field measurement and could be as a substitute for hydrophone in most cases.展开更多
In order to find stable, accurate, and computationally efficient methods for performing the inverse Laplace transform, a new double transformation approach is proposed. To validate and improve the inversion solution o...In order to find stable, accurate, and computationally efficient methods for performing the inverse Laplace transform, a new double transformation approach is proposed. To validate and improve the inversion solution obtained using the Gaver-Stehfest algorithm, direct Laplace transforms are taken of the numerically inverted transforms to compare with the original function. The numerical direct Laplace transform is implemented with a composite Simpson’s rule. Challenging numerical examples involving periodic and oscillatory functions, are investigated. The numerical examples illustrate the computational accuracy and efficiency of the direct Laplace transform and its inverse due to increasing the precision level and the number of terms included in the expansion. It is found that the number of expansion terms and the precision level selected must be in a harmonious balance in order for correct and stable results to be obtained.展开更多
A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system whic...A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system which is compute-intensive. A hardware transform is inevitable to compute the transform for the real-time application. Compared with the 4 × 4 transform for H.264/AVC, the 8 × 8 integer transform is much more complex and the coefficient in the inverse transform matrix Ts is not inerratic as that in H.264/AVC. Dividing the Ts into matrix Ss and Rs, the proposed architecture is implemented with the adders and the specific CSA-trees instead of multipliers, which are area and time consuming. The architecture obtains the data processing rate up to 8 pixels per-cycle at a low cost of area. Synthesized to TSMC 0.18 μm COMS process, the architecture attains the operating frequency of 300 MHz at cost of 34 252 gates with a 2-stage pipeline scheme. A reusable scheme is also introduced for the area optimization, which results in the operating frequency of 143 MHz at cost of only 19 758 gates.展开更多
A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Four...A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Fourier transformation are easily applied. We finally obtain a regularized approximation to the inverse Laplace transform as finite sum展开更多
In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm r...In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.展开更多
The influences of chemical segregation and phase transformation on liquid density variation during solidification of Ni-based supperalloy Inconel 718 were investigated using SEM and EDS. It was found that significant ...The influences of chemical segregation and phase transformation on liquid density variation during solidification of Ni-based supperalloy Inconel 718 were investigated using SEM and EDS. It was found that significant segregation in liquid prompts high Nb phase to precipitate directly from liquid, which results in the redistribution of alloy elements and liquid density in their vicinity. The term "inter-precipitate liquid density" is therefore proposed and this concept should be applied to determine the solidification behavior of superalloy Inconel 718.展开更多
The main problems in three-dimensional gravity inversion are the non-uniqueness of the solutions and the high computational cost of large data sets. To minimize the high computational cost, we propose a new sorting me...The main problems in three-dimensional gravity inversion are the non-uniqueness of the solutions and the high computational cost of large data sets. To minimize the high computational cost, we propose a new sorting method to reduce fluctuations and the high frequency of the sensitivity matrix prior to applying the wavelet transform. Consequently, the sparsity and compression ratio of the sensitivity matrix are improved as well as the accuracy of the forward modeling. Furthermore, memory storage requirements are reduced and the forward modeling is accelerated compared with uncompressed forward modeling. The forward modeling results suggest that the compression ratio of the sensitivity matrix can be more than 300. Furthermore, multiscale inversion based on the wavelet transform is applied to gravity inversion. By decomposing the gravity inversion into subproblems of different scales, the non-uniqueness and stability of the gravity inversion are improved as multiscale data are considered. Finally, we applied conventional focusing inversion and multiscale inversion on simulated and measured data to demonstrate the effectiveness of the proposed gravity inversion method.展开更多
This study deduces a general inversion of continuous wavelet transform (CWT) with timescale being real rather than positive. In conventional CWT inversion, wavelet’s dual is assumed to be a reconstruction wavelet or ...This study deduces a general inversion of continuous wavelet transform (CWT) with timescale being real rather than positive. In conventional CWT inversion, wavelet’s dual is assumed to be a reconstruction wavelet or a localized function. This study finds that wavelet’s dual can be a harmonic which is not local. This finding leads to new CWT inversion formulas. It also justifies the concept of normal wavelet transform which is useful in time-frequency analysis and time-frequency filtering. This study also proves a law for CWT inversion: either wavelet or its dual must integrate to zero.展开更多
The interior Radon transform arises from a limited data problem in computerized tomography. The corresponding operator R is investigated as a mapping between wightedL 2-spaces. Our result is the explicit construction ...The interior Radon transform arises from a limited data problem in computerized tomography. The corresponding operator R is investigated as a mapping between wightedL 2-spaces. Our result is the explicit construction of a singular value decomposition for R. This immediately leads to an inversion formula by series expansion and range characterizations.展开更多
Let X=Rn +×R denote the underlying manifold of polyradial functions on the Heisenberg group H n. We construct a generalized translation on X=Rn +×R, and establish the Plancherel formula on L2(X,dμ). Usin...Let X=Rn +×R denote the underlying manifold of polyradial functions on the Heisenberg group H n. We construct a generalized translation on X=Rn +×R, and establish the Plancherel formula on L2(X,dμ). Using the Gelfand transform we give the condition of generalized wavelets on L2(X,dμ). Moreover, we show the reconstruction formulas for wavelet packet trnasforms and an inversion formula of the Radon transform on X.展开更多
文摘This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.
文摘A new set of relative orbit elements (ROEs) is used to derive a new elliptical formation flying model in previous work. In-plane and out-of-plane relative motions can be completely decoupled, which benefits elliptical formation design. In order to study the elliptical control strategy and perturbation effects, it is necessary to derive the inverse transformation of the relative state transition matrix based on relative orbit elements. Poisson bracket theory is used to obtain the linear transformations between the two representations: the relative orbit elements and the geocentric orbital frame. In this paper, the details of these transformations are presented.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project No. (PNURSP2022R50),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The objective of this article is to provide a novel extension of the conventional inverse Weibull distribution that adds an extra shape parameter to increase its flexibility.This addition is beneficial in a variety of fields,including reliability,economics,engineering,biomedical science,biological research,environmental studies,and finance.For modeling real data,several expanded classes of distributions have been established.The modified alpha power transformed approach is used to implement the new model.The datamatches the new inverseWeibull distribution better than the inverse Weibull distribution and several other competing models.It appears to be a distribution designed to support decreasing or unimodal shaped distributions based on its parameters.Precise expressions for quantiles,moments,incomplete moments,moment generating function,characteristic generating function,and entropy expression are among the determined attributes of the new distribution.The point and interval estimates are studied using the maximum likelihood method.Simulation research is conducted to illustrate the correctness of the theoretical results.Three applications to medical and engineering data are utilized to illustrate the model’s flexibility.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603)
文摘The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10474076 and 10375041
文摘One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equations of Cauchy integral satisfy the Lax equations. Such a basic problem still exists in the procedure of deriving the dark soliton solutions of the NLS equation in normal dispersion with non-vanishing boundary conditions through the inverse scattering transform. In this paper, a pair of Jost solutions with same analytic properties are composed to be a 2 × 2 matrix and then another pair are introduced to be its right inverse confirmed by the Liouville theorem. As they are both 2 × 2 matrices, the right inverse should be the left inverse too, based upon which it is not difficult to show that these Jost solutions satisfy both the first and second Lax equations. As a result of compatibility condition, the dark soliton solutions definitely satisfy the NLS equation in normal dispersion with non-vanishing boundary conditions.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10534030 and 10375041
文摘Since the Jost solutions of the DNLS equation does not tend to the free Jost solutioins as |λ|→∞, the usual inverse scattering transform (IST) must be revised. Beside the Kaup and Newell's approach, we propose a simple revision in constructing the equations of IST, where the usual Zakharov-Shabat kern is revised by multiplying λ^-2 or λ^-1. To justify the revision we show that the Jost solutions obtained do satisfy the pair of compatibility equations.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10371070,10671121the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers+1 种基金Shanghai Leading Academic Discipline Project under Grant No.J50101 the President Foundation of East China Institute of Technology under Grant No.DHXK0810
文摘N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse scatteringtransform.
基金the National Key Research and Development Program of China(No.2016YFC060110403).
文摘Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fourier transform related to the electromagnetic response in the frequency and time domains becomes a sine or cosine transform under the excitation of downward-step current.We established a transformation matrix based on the digital fi ltering calculation for the sine transform,and then the frequency domain projection of the TEM data was determined from the linear transformation system using the smoothing constrained least squares inversion method,in which only the imaginary part was used to maintain the TEM data transformation equivalence in the bidirectional projection.Thus,the time-domain TEM inversion problem was indirectly and effectively solved in the frequency domain.In the 3D inversion of the transformed frequency-domain data,the limited-memory Broyden–Fletcher–Goldfarb–Shannoquasi–Newton(L-BFGS)method was used and modifi ed with a restart strategy to adjust the regularization parameter when the algorithm tended to a local minimum.Synthetic data tests showed that our domain transformation method can stably project the TEM data into the frequency domain with very high accuracy;furthe rmore,the 3D inversion of the transformed frequency-domain data is stable,can be used to recover the real resistivity model with an acceptable effi ciency.
基金National Nature Science Foundation of China (49974021).
文摘A new method for receiver function inversion by wavelet transformation is presented in this paper. Receiver func-tion is expanded to different scales with different resolution by wavelet transformation. After an initial model be-ing taken, a generalized least-squares inversion procedure is gradually carried out for receiver function from low to high scale, with the inversion result for low order receiver function as the initial model for high order. A neighborhood containing the global minimum is firstly searched from low scale receiver function, and will gradu-ally focus at the global minimum by introducing high scale information of receiver function. With the gradual ad-dition of high wave-number to smooth background velocity structure, wavelet transformation can keep the inver-sion result converge to the global minimum, reduce to certain extent the dependence of inversion result on the initial model, overcome the nonuniqueness of generalized least-squares inversion, and obtain reliable crustal and upper mantle velocity with high resolution.
文摘A new reflection approach for field distribution measurement of ultrasonic transducers was investigated. Instead of a point-like reflection target (rigid sphere) or thin wires (line-like targets), a line response function of experimental knife-edge distribution combined with the inverse Abel transforms was used to estimate the lateral beam distributions of ultrasonic transducers. The measurement steps were as follows:① A knife-edge was scanned perpendicularly to acoustic beam axis of the transducer using an ultrasonic C-scan system to obtain its ultrasonic image line response function, ② the transverse beam distribution was solved by the inverse Abel transforms, and ③ experiments were performed to obtain the lateral beam profiles of two transducers, with and without focus, and the results were compared with those from a hydrophone. The results showed that this method was effective for ultrasonic field measurement and could be as a substitute for hydrophone in most cases.
文摘In order to find stable, accurate, and computationally efficient methods for performing the inverse Laplace transform, a new double transformation approach is proposed. To validate and improve the inversion solution obtained using the Gaver-Stehfest algorithm, direct Laplace transforms are taken of the numerically inverted transforms to compare with the original function. The numerical direct Laplace transform is implemented with a composite Simpson’s rule. Challenging numerical examples involving periodic and oscillatory functions, are investigated. The numerical examples illustrate the computational accuracy and efficiency of the direct Laplace transform and its inverse due to increasing the precision level and the number of terms included in the expansion. It is found that the number of expansion terms and the precision level selected must be in a harmonious balance in order for correct and stable results to be obtained.
文摘A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system which is compute-intensive. A hardware transform is inevitable to compute the transform for the real-time application. Compared with the 4 × 4 transform for H.264/AVC, the 8 × 8 integer transform is much more complex and the coefficient in the inverse transform matrix Ts is not inerratic as that in H.264/AVC. Dividing the Ts into matrix Ss and Rs, the proposed architecture is implemented with the adders and the specific CSA-trees instead of multipliers, which are area and time consuming. The architecture obtains the data processing rate up to 8 pixels per-cycle at a low cost of area. Synthesized to TSMC 0.18 μm COMS process, the architecture attains the operating frequency of 300 MHz at cost of 34 252 gates with a 2-stage pipeline scheme. A reusable scheme is also introduced for the area optimization, which results in the operating frequency of 143 MHz at cost of only 19 758 gates.
文摘A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Fourier transformation are easily applied. We finally obtain a regularized approximation to the inverse Laplace transform as finite sum
基金supported by the National Science and Technology Major Project (No.2011ZX05023-005-008)
文摘In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.
基金supported by the National Natural Science Foundation of China under a grant No. 50974144
文摘The influences of chemical segregation and phase transformation on liquid density variation during solidification of Ni-based supperalloy Inconel 718 were investigated using SEM and EDS. It was found that significant segregation in liquid prompts high Nb phase to precipitate directly from liquid, which results in the redistribution of alloy elements and liquid density in their vicinity. The term "inter-precipitate liquid density" is therefore proposed and this concept should be applied to determine the solidification behavior of superalloy Inconel 718.
基金This work was supported by the Key National Research Project of China (Nos. 2017YFC0601900 and 2016YFC0303100) and the Key Program of National Natural Science Foundation of China (Nos. 41530320 and 41774125).
文摘The main problems in three-dimensional gravity inversion are the non-uniqueness of the solutions and the high computational cost of large data sets. To minimize the high computational cost, we propose a new sorting method to reduce fluctuations and the high frequency of the sensitivity matrix prior to applying the wavelet transform. Consequently, the sparsity and compression ratio of the sensitivity matrix are improved as well as the accuracy of the forward modeling. Furthermore, memory storage requirements are reduced and the forward modeling is accelerated compared with uncompressed forward modeling. The forward modeling results suggest that the compression ratio of the sensitivity matrix can be more than 300. Furthermore, multiscale inversion based on the wavelet transform is applied to gravity inversion. By decomposing the gravity inversion into subproblems of different scales, the non-uniqueness and stability of the gravity inversion are improved as multiscale data are considered. Finally, we applied conventional focusing inversion and multiscale inversion on simulated and measured data to demonstrate the effectiveness of the proposed gravity inversion method.
文摘This study deduces a general inversion of continuous wavelet transform (CWT) with timescale being real rather than positive. In conventional CWT inversion, wavelet’s dual is assumed to be a reconstruction wavelet or a localized function. This study finds that wavelet’s dual can be a harmonic which is not local. This finding leads to new CWT inversion formulas. It also justifies the concept of normal wavelet transform which is useful in time-frequency analysis and time-frequency filtering. This study also proves a law for CWT inversion: either wavelet or its dual must integrate to zero.
基金Supported by the Foundation of the Ministry of Education of China and the Science Foundation of Wuhan University
文摘The interior Radon transform arises from a limited data problem in computerized tomography. The corresponding operator R is investigated as a mapping between wightedL 2-spaces. Our result is the explicit construction of a singular value decomposition for R. This immediately leads to an inversion formula by series expansion and range characterizations.
基金Supported by the Foundation of the National Natural Science of China( No.1 0 0 71 0 39) and the Foundation of Edu-cation Commission of Jiangsu Province
文摘Let X=Rn +×R denote the underlying manifold of polyradial functions on the Heisenberg group H n. We construct a generalized translation on X=Rn +×R, and establish the Plancherel formula on L2(X,dμ). Using the Gelfand transform we give the condition of generalized wavelets on L2(X,dμ). Moreover, we show the reconstruction formulas for wavelet packet trnasforms and an inversion formula of the Radon transform on X.