Numerical study on the unsteady hydrodynamic characteristics of oscillating rigid and flexible tuna-tails in viscous flow-field is performed. Investigations are conducted using Reynolds-Averaged Navier-Stokes (RANS)...Numerical study on the unsteady hydrodynamic characteristics of oscillating rigid and flexible tuna-tails in viscous flow-field is performed. Investigations are conducted using Reynolds-Averaged Navier-Stokes (RANS) equations with a moving adaptive mesh. The effect of swimming speed, flapping amplitude, frequency and flexure amplitude on the propulsion performance of the rigid and flexible tuna-tails are investigated. Computational results reveal that a pair of leading edge vortices develop along the tail surface as it undergoes an oscillating motion. The propulsive efficiency has a strong correlation with various locomotive parameters. Peak propulsive efficiency can be obtained by adjusting these parameters. Particularly, when input power coeffcient is less than 2.8, the rigid tail generates larger thrust force and higher propulsive efficiency than flexible tail. However, when input power coefficient is larger than 2.8, flexible tail is superior to rigid tail.展开更多
Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many...Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many difficulties in application.A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB,especially with consideration of hydrodynamic force.The principle of wave-driven propulsion mechanism is briefly introduced.To set a theory foundation for study on the MMB,a dynamic model of the propulsion mechanism of the MMB is obtained.The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations.A simplified form of the motion equations is reached by omitting terms with high order small values.The relationship among the heave motion of the buoy,stiffness of the elastic components,and the forward speed can be obtained by using these simplified equations.The dynamic analysis show the following:The angle of displacement of foil is fairly small with the biggest value around 0.3 rad;The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy;The relationship among heaven motion,stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle,therefore,the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant.The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.展开更多
The paper presents an over modification multi grid method of the ship propulsion mechanism of Weis Fogh, and obtains the complex potential integral formula by distributing vortices on the wing. The numerical formula i...The paper presents an over modification multi grid method of the ship propulsion mechanism of Weis Fogh, and obtains the complex potential integral formula by distributing vortices on the wing. The numerical formula is given on fine grid and coarse grid. The numerical results show that the algorithm is best when over modification factor is 1.5.展开更多
As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitab...As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitable ingredient for LACP. Under a flowing nitrogen environment, two kinds of unique burning surfaces were observed to occur for 5-ATZ, used as a single reacting propellant ingredient with the addition of carbon, under laser ablation. Both surfaces are hollow structures and differ by the possible presence of edges. Using micro computed tomography, the 3D perspective structures of both surfaces were revealed. Resorting to various characterization methods, a unified formation mechanism for both surfaces is proposed. This mechanism specifically applies to laser ablation, but could be crucial to common burning mechanisms in LACP.展开更多
A reconfigurable propulsion unit based on the Peaucellier-Lipkin mechanism has the ability to describe exact straight or curved paths depending on the selected ratio between the lengths of two of its links. The Peauce...A reconfigurable propulsion unit based on the Peaucellier-Lipkin mechanism has the ability to describe exact straight or curved paths depending on the selected ratio between the lengths of two of its links. The Peaucellier-Lipkin mechanism with one degree of freedom is transformed into a more sophisticated parallel kinematic chain by including four more degrees of freedom. The resulting propulsion unit is able to adapt its kinematic structure and reach instant centers of rotation, in accordance with the presence of three points that border a geometric path. A laser sensor mounted on the body of the machine detects each point. Once the machine has detected the exact location of the border of the road, it walks along a curve parallel to that border. Although the proposed research describes only one propulsion unit or leg, the methodology can be applied to all the legs of the walking machine. The novel 5-DOF leg is able to reach different centers of rotation, providing either the concave or convex arcs that satisfy the basic principle of displacement of walking machines.展开更多
In order to solve the issues concerning the cross-unit sharing of information resources in rural areas, we analyze the incentive problem of the sharing of information resources in rural areas using the incentive theor...In order to solve the issues concerning the cross-unit sharing of information resources in rural areas, we analyze the incentive problem of the sharing of information resources in rural areas using the incentive theory method; establish corresponding incentive mechanism model (It is divided into positive incentive model and negative incentive model, and only when the two models guarantee each other and are used at the same time can they be effective). Based on this, we put forward the institutional design for sharing of information resources in rural areas as follows: firstly, establishing an administrative agency of rural information resources sharing, above the authority of all units, responsible for related work on sharing of information resources in rural areas; secondly, establishing and improving the positive and negative incentive mechanisms, to ensure the realization of sharing of information resources in rural areas.展开更多
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of...The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.展开更多
Amphibious robots are very attractive for their broad applications in resource exploration, disaster rescue, and recon- naissance. However, it is very challenging to develop the robots for their complex, amphibious wo...Amphibious robots are very attractive for their broad applications in resource exploration, disaster rescue, and recon- naissance. However, it is very challenging to develop the robots for their complex, amphibious working environments. In the complex amphibious environment, amphibious robots should possess multi-capabilities to walk on rough ground, maneuver underwater, and pass through transitional zones such as sandy and muddy terrain. These capabilities require a high-performance propulsion mechanism for the robots. To tackle a complex task, a novel amphibious robot (AmphiHex-I) with,transformable fin-leg composite propulsion mechanisms is developed. With the fin-leg composite propulsions, AmphiHex-I can walk on rough and soft substrates and swim in water with many maneuvers. This paper presents the structural design of the transformable fin-leg propulsion mechanism and its driving module. A hybrid model is used to explore the dynamics between the trans- formable legs and transitional environment such as granular medium. The locomotion performances of legs with various ellip- tical shapes are analyzed, which is verified by the coincidence between the model predictions and the simulation results. Further, an orthogonal experiment is conducted to study the locomotion performance of a two-legged platform walking with an asyn- chronous gait in the sandy and muddy terrain. Finally, initial experiments of AmphiHex-I walking on various lands and swimming in water are implemented. These results verify that the transformable fin-leg mechanisms enable the amphibious robot to pass through a complex, amphibious working environment.展开更多
Purpose-Thruster point assembly mechanism(TPAM)of the electric propulsion system allows to adjust the thrust vector,sothat the thrust vectorisdirectedtothesatellitecenterof gravity(COG)during the satellite on-orbit wo...Purpose-Thruster point assembly mechanism(TPAM)of the electric propulsion system allows to adjust the thrust vector,sothat the thrust vectorisdirectedtothesatellitecenterof gravity(COG)during the satellite on-orbit working period.In this way the impact of disturbance torque caused by deviation of the thrust vector from the satellite COG during thruster ignition can be decreased.Therefore,the control accuracy of satellite is influenced directly by the control accuracy of TPAM.On the other hand,the on-orbit application of TPAM is restricted to the on-orbit computer resource.Therefore,the purpose of this paper is to design a control strategy for TPAM,and the strategy should not only be able to control the TPAM precisely but also be easily implemented by the on-board computer.Design/methodology/approach-First,the structure and work principle of TPAM are discussed,and the mathematical model based on D-H coordinate system is built for it.Then the fitting methods are utilized to design the control strategy of TPAM.Absolute position fitting-based control strategy and relative position fitting-based control strategy are designed,and the least squares algorithm is introduced for parameter selection.Findings-Simulations and tests are provided for the TPAM.Compared with the state-of-the-art PD controller,the proposed control strategy shows smaller overshoot and more simple realization.The experiment results are matched with the simulation results and both the experiment and simulation results show the validity of the proposed control strategies.Practical implications-The designed control strategies can be used for the TPAM of some satellite’s electric propulsion system.Originality/value-The mathematical model of the TPAM based on D-H coordinate system is given.The absolute position fitting-based control strategy and relative position fitting-based control strategy are proposed.Compared with existing methods,the two control strategies have more simple structure and smaller amount of computations.Furthermore,the relative position fitting-based control strategy achieves high precision with simple structure.展开更多
文摘Numerical study on the unsteady hydrodynamic characteristics of oscillating rigid and flexible tuna-tails in viscous flow-field is performed. Investigations are conducted using Reynolds-Averaged Navier-Stokes (RANS) equations with a moving adaptive mesh. The effect of swimming speed, flapping amplitude, frequency and flexure amplitude on the propulsion performance of the rigid and flexible tuna-tails are investigated. Computational results reveal that a pair of leading edge vortices develop along the tail surface as it undergoes an oscillating motion. The propulsive efficiency has a strong correlation with various locomotive parameters. Peak propulsive efficiency can be obtained by adjusting these parameters. Particularly, when input power coeffcient is less than 2.8, the rigid tail generates larger thrust force and higher propulsive efficiency than flexible tail. However, when input power coefficient is larger than 2.8, flexible tail is superior to rigid tail.
基金Supported by National Natural Science Foundation of China(Grant No.51175484)Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0500)+1 种基金Program of Introducing Talents of Discipline to Universities,China(Grant No.B14028)Fundamental Research Funds for the Central Universities,China(Grant No.841513053)
文摘Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many difficulties in application.A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB,especially with consideration of hydrodynamic force.The principle of wave-driven propulsion mechanism is briefly introduced.To set a theory foundation for study on the MMB,a dynamic model of the propulsion mechanism of the MMB is obtained.The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations.A simplified form of the motion equations is reached by omitting terms with high order small values.The relationship among the heave motion of the buoy,stiffness of the elastic components,and the forward speed can be obtained by using these simplified equations.The dynamic analysis show the following:The angle of displacement of foil is fairly small with the biggest value around 0.3 rad;The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy;The relationship among heaven motion,stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle,therefore,the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant.The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.
文摘The paper presents an over modification multi grid method of the ship propulsion mechanism of Weis Fogh, and obtains the complex potential integral formula by distributing vortices on the wing. The numerical formula is given on fine grid and coarse grid. The numerical results show that the algorithm is best when over modification factor is 1.5.
基金supported by the Shanghai Aerospace Science & Technology Innovation Fund (Grant No. SAST201363)the Fundamental Research Funds for the Central Universities (Grant No. 30919012102 in part)。
文摘As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitable ingredient for LACP. Under a flowing nitrogen environment, two kinds of unique burning surfaces were observed to occur for 5-ATZ, used as a single reacting propellant ingredient with the addition of carbon, under laser ablation. Both surfaces are hollow structures and differ by the possible presence of edges. Using micro computed tomography, the 3D perspective structures of both surfaces were revealed. Resorting to various characterization methods, a unified formation mechanism for both surfaces is proposed. This mechanism specifically applies to laser ablation, but could be crucial to common burning mechanisms in LACP.
基金Supported by Postgraduate Department of School of Mechanical Engineering,Universidad Michoacana de San Nicolás de Hidalgo,Francisco J.Múgica S/N Ciudad Universitaria,C.P.58030,Morelia,Michoacán,México
文摘A reconfigurable propulsion unit based on the Peaucellier-Lipkin mechanism has the ability to describe exact straight or curved paths depending on the selected ratio between the lengths of two of its links. The Peaucellier-Lipkin mechanism with one degree of freedom is transformed into a more sophisticated parallel kinematic chain by including four more degrees of freedom. The resulting propulsion unit is able to adapt its kinematic structure and reach instant centers of rotation, in accordance with the presence of three points that border a geometric path. A laser sensor mounted on the body of the machine detects each point. Once the machine has detected the exact location of the border of the road, it walks along a curve parallel to that border. Although the proposed research describes only one propulsion unit or leg, the methodology can be applied to all the legs of the walking machine. The novel 5-DOF leg is able to reach different centers of rotation, providing either the concave or convex arcs that satisfy the basic principle of displacement of walking machines.
基金Supported by Soft Science Project of the Ministry of Science and Technology (2011GXS1D003)Soft Science Project of Chongqing Municipality (cstc2011cx-rkxB00008)
文摘In order to solve the issues concerning the cross-unit sharing of information resources in rural areas, we analyze the incentive problem of the sharing of information resources in rural areas using the incentive theory method; establish corresponding incentive mechanism model (It is divided into positive incentive model and negative incentive model, and only when the two models guarantee each other and are used at the same time can they be effective). Based on this, we put forward the institutional design for sharing of information resources in rural areas as follows: firstly, establishing an administrative agency of rural information resources sharing, above the authority of all units, responsible for related work on sharing of information resources in rural areas; secondly, establishing and improving the positive and negative incentive mechanisms, to ensure the realization of sharing of information resources in rural areas.
基金the Fundamental Research Funds for the Central Universities(Grant No.30920041102)National Natural Science Foundation of China(Grant No.11802134).
文摘The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.
基金This research has been financially supported by National Natural Science Foundation of China (No. 51375468) and the Technology and Innovation Fund of the Chinese Academy of Sciences (CXJJ- 10-M 16).
文摘Amphibious robots are very attractive for their broad applications in resource exploration, disaster rescue, and recon- naissance. However, it is very challenging to develop the robots for their complex, amphibious working environments. In the complex amphibious environment, amphibious robots should possess multi-capabilities to walk on rough ground, maneuver underwater, and pass through transitional zones such as sandy and muddy terrain. These capabilities require a high-performance propulsion mechanism for the robots. To tackle a complex task, a novel amphibious robot (AmphiHex-I) with,transformable fin-leg composite propulsion mechanisms is developed. With the fin-leg composite propulsions, AmphiHex-I can walk on rough and soft substrates and swim in water with many maneuvers. This paper presents the structural design of the transformable fin-leg propulsion mechanism and its driving module. A hybrid model is used to explore the dynamics between the trans- formable legs and transitional environment such as granular medium. The locomotion performances of legs with various ellip- tical shapes are analyzed, which is verified by the coincidence between the model predictions and the simulation results. Further, an orthogonal experiment is conducted to study the locomotion performance of a two-legged platform walking with an asyn- chronous gait in the sandy and muddy terrain. Finally, initial experiments of AmphiHex-I walking on various lands and swimming in water are implemented. These results verify that the transformable fin-leg mechanisms enable the amphibious robot to pass through a complex, amphibious working environment.
文摘Purpose-Thruster point assembly mechanism(TPAM)of the electric propulsion system allows to adjust the thrust vector,sothat the thrust vectorisdirectedtothesatellitecenterof gravity(COG)during the satellite on-orbit working period.In this way the impact of disturbance torque caused by deviation of the thrust vector from the satellite COG during thruster ignition can be decreased.Therefore,the control accuracy of satellite is influenced directly by the control accuracy of TPAM.On the other hand,the on-orbit application of TPAM is restricted to the on-orbit computer resource.Therefore,the purpose of this paper is to design a control strategy for TPAM,and the strategy should not only be able to control the TPAM precisely but also be easily implemented by the on-board computer.Design/methodology/approach-First,the structure and work principle of TPAM are discussed,and the mathematical model based on D-H coordinate system is built for it.Then the fitting methods are utilized to design the control strategy of TPAM.Absolute position fitting-based control strategy and relative position fitting-based control strategy are designed,and the least squares algorithm is introduced for parameter selection.Findings-Simulations and tests are provided for the TPAM.Compared with the state-of-the-art PD controller,the proposed control strategy shows smaller overshoot and more simple realization.The experiment results are matched with the simulation results and both the experiment and simulation results show the validity of the proposed control strategies.Practical implications-The designed control strategies can be used for the TPAM of some satellite’s electric propulsion system.Originality/value-The mathematical model of the TPAM based on D-H coordinate system is given.The absolute position fitting-based control strategy and relative position fitting-based control strategy are proposed.Compared with existing methods,the two control strategies have more simple structure and smaller amount of computations.Furthermore,the relative position fitting-based control strategy achieves high precision with simple structure.