Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuit...Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs.展开更多
The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far ...The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.展开更多
Full-waveform inversion(FWI) uses the full information of seismic data to obtain a quantitative estimation of subsurface physical parameters. Anisotropic FWI has the potential to recover high-resolution velocity and a...Full-waveform inversion(FWI) uses the full information of seismic data to obtain a quantitative estimation of subsurface physical parameters. Anisotropic FWI has the potential to recover high-resolution velocity and anisotropy parameter models, which are critical for imaging the long-offset and wideazimuth data. We develop an acoustic anisotropic FWI method based on a simplified pure quasi P-wave(qP-wave) equation, which can be solved efficiently and is beneficial for the subsequent inversion.Using the inverse Hessian operator to precondition the functional gradients helps to reduce the parameter tradeoff in the multi-parameter inversion. To balance the accuracy and efficiency, we extend the truncated Gauss-Newton(TGN) method into FWI of pure qP-waves in vertical transverse isotropic(VTI) media. The inversion is performed in a nested way: a linear inner loop and a nonlinear outer loop.We derive the formulation of Hessian-vector products for pure qP-waves in VTI media based on the Lagrange multiplier method and compute the model update by solving a Gauss-Newton linear system via a matrix-free conjugate gradient method. A suitable preconditioner and the Eisenstat and Walker stopping criterion for the inner iterations are used to accelerate the convergence and avoid prohibitive computational cost. We test the proposed FWI method on several synthetic data sets. Inversion results reveal that the pure acoustic VTI FWI exhibits greater accuracy than the conventional pseudoacoustic VTI FWI. Additionally, the TGN method proves effective in mitigating the parameter crosstalk and increasing the accuracy of anisotropy parameters.展开更多
The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods fo...The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods for first-arrival picking based on sample points are characterized by theoretical errors,especially in low-sampling-frequency OBS data because the travel time of seismic waves is not an integer multiple of the sampling interval.In this paper,a first-arrival picking method that utilizes the spatial waveform variation characteristics of active source OBS data is presented.First,the distribution law of theoretical error is examined;adjacent traces exhibit variation characteristics in their waveforms.Second,a label cross-correlation superposition method for extracting highfrequency signals is presented to enhance the first-arrival picking precision.Results from synthetic and field data verify that the proposed approach is robust,successfully overcomes the limitations of low sampling frequency,and achieves precise outcomes that are comparable with those of high-sampling-frequency data.展开更多
Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be co...Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation.展开更多
Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-vary...Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-varying characteristics in sound propagation channels and cannot easily extract valuable waveform features.Sound propagation channels in seawater are time-and space-varying convolutional channels.In the extraction of the waveform features of underwater acoustic signals,the effect of high-accuracy underwater acoustic signal recognition is identified by eliminating the influence of time-and space-varying convolutional channels to the greatest extent possible.We propose a hash aggregate discriminative network(HADN),which combines hash learning and deep learning to minimize the time-and space-varying effects on convolutional channels and adaptively learns effective underwater waveform features to achieve high-accuracy underwater pulse waveform recognition.In the extraction of the hash features of acoustic signals,a discrete constraint between clusters within a hash feature class is introduced.This constraint can ensure that the influence of convolutional channels on hash features is minimized.In addition,we design a new loss function called aggregate discriminative loss(AD-loss).The use of AD-loss and softmax-loss can increase the discriminativeness of the learned hash features.Experimental results show that on pool and ocean datasets,which were collected in pools and oceans,respectively,by using acoustic collectors,the proposed HADN performs better than other comparative models in terms of accuracy and mAP.展开更多
In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication m...In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication multi-user interference(MUI)and the gap between dual-use waveform and ideal radar waveform is minimized with peak-toaverage power ratio(PAPR)constraints.We propose an efficient algorithm based on alternating direction method of multipliers(ADMM),which is able to decouple multiple variables and provide a closed-form solution for each subproblem.In addition,to improve the sensing performance in both spatial and temporal domains,we propose a new criteria to design the ideal radar waveform,in which the beam pattern is made similar to the ideal one and the integrated sidelobe level of the ambiguity function in each target direction is minimized in the region of interest.The limited memory Broyden-Fletcher-Goldfarb-Shanno(LBFGS)algorithm is applied to the design of the ideal radar waveform which works as a reference in the design of the dual-function waveform.Numerical results indicate that the designed dual-function waveform is capable of offering good communication quality of service(QoS)and sensing performance.展开更多
Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants wit...Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants with primary dysmenorrhea were randomly divided into dense-sparse wave,continuous wave,and discontinuous wave groups in a 1:1:1 ratio.Two lateral Ciliao(BL 32)points were used.All three groups started treatment 3–5 days before menstruation,once a day for six sessions per course of treatment,one course of treatment per menstrual cycle,and three menstrual cycles.The primary outcome measure was the proportion with an average visual analog scale(VAS)score reduction of≥50%from baseline for dysmenorrhea in the third menstrual cycle during treatment.The secondary outcome measures included changes in dysmenorrhea VAS scores,Cox Menstrual Symptom Scale scores and the proportion of patients taking analgesic drugs.Results: The proportion of cases where the average VAS score for dysmenorrhea decreased by≥50%from baseline in the third menstrual cycle was not statistically significant(P>.05).Precisely 30 min after acupuncture and regarding immediate analgesia on the most severe day of dysmenorrhea,there was a statistically significant difference in the dense-sparse wave group compared with the other two groups during the third menstrual cycle(P<.05).Additionally,there was a statistically significant difference between the dense-sparse wave and discontinuous wave groups 24 h after acupuncture(P<.05).Conclusions: Waveform electroacupuncture can alleviate primary dysmenorrhea and its related symptoms in patients.The three groups showed similar results in terms of short-and long-term analgesic efficacy and a reduction in the number of patients taking analgesic drugs.Regarding achieving immediate analgesia,the dense-sparse wave group was slightly better than the other two groups.展开更多
Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with un...Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with uncertainties, especially in marginal fields. An approach is employed in this study that integrated rock physics and waveform inverse modelling for lithology and fluid-type characterization to appropriately identify potential hydrocarbon saturated zones and their corresponding lithology. Seismic and well-log data were analyzed using Hampson Russel software. The method adopted includes lithofacies and fluid content analysis using rock physics parameters and seismic simultaneous inverse modelling. Rock physics analysis identified 2 broad reservoirs namely: HDZ1 and HDZ2 reservoirs. Results from the inverse modelling showed that low values of acoustic impedance from 19,743 to 20,487 (ft/s)(g/cc) reflect hydrocarbon-bearing reservoirs while medium to high values shows brine and shale respectively, with brine zone ranging from 20,487 to 22,531 (ft/s)(g/cc) and shale above 22,531 (ft/s)(g/cc). Two lithofacies were identified from inversion analysis of Vp/Vs and Mu-Rho, namely: sand and shale with VpVs 1.95 values respectively. Mu-Rho > 12.29 (GPa)(g/cc) and <12.29 (GPa) (g/cc) represent sand and shale respectively. From 3D volume, it was observed that a high accumulation of hydrocarbon was observed to be saturated at the north to the eastern part of the field forming a meandering channel. Sands were mainly distributed around the northeastern to the southwestern part of the field, that tends to be away from Well 029. This was also validated by the volume of rigidity modulus (Mu-Rho) showing high values indicating sands fall within the northeastern part of the field.展开更多
We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). I...We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.展开更多
A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filte...A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.展开更多
Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based ...Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.展开更多
In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable...In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.展开更多
The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted....The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted. With one-dimension stress wave theory, ANSYS/LS-DYNA software and experiment, the effect rules of the projectile's front-head style and the accelerometer's mounted base's length on acceleration waveform were analyzed. The results show that the acceleration duration inspired from Hopkinson bar is almost equal to the rising edge time of perfect half sine stress wave, and it is independent to the mounted base's length. Moreover, the projectile's fronthead style is a main affecting factor, and the projectiles with less Conical degrees will produce the lower amplitude and longer acceleration duration.展开更多
In most effective bits evaluation of waveform recorders, the prerequisite is that there is no signal source distortion, or the distortion can be neglected. But when the distortion can be neglected or how it affects th...In most effective bits evaluation of waveform recorders, the prerequisite is that there is no signal source distortion, or the distortion can be neglected. But when the distortion can be neglected or how it affects the evaluation when it can't be neglected it is not determined yet. In this paper, the influence of signal source distortion to the evaluation of the effective bits of waveform recorders is discussed, then, the correction method of the effective bits error caused by the distortion influence is given. Finally , the error limit of the effective bits is given and how to selecte the calibrator is introduced. In the end , some simulation results of the new method in test are described.展开更多
Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtai...Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtain the HRR profile of a target. For moving targets which are of great importance in practical radar usage, autofocusing,i.e. phase correction, is a necessary and critical step of the synthetic HRR processing. The purpose of autofocusing is to remove the radial motion effect of the target from radar echoes, and only reserve the stepped frequency effect which is the basis of synthetic HRR capability. We investigate two autofocusing approaches for synthetic HRR radars using stepped frequency waveform in this paper. The first is motion fitting method. This method depends on a certain parametric model, and is computationally expensive. Then we propose the iterative dominant scatterer method. It is robust, non parametric and simple in computation in comparison with the motion fitting method. Experimental results based on data acquired by using a metallised scale model B 52 in a microwave anechoic chamber reveal the validity and effectiveness of the method.展开更多
In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the He...In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the Hessian matrix and its inverse. Although the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) or Hessian-free inexact Newton (HFN) methods are able to use approximate Hessian information, the information they collect is limited. The two methods can be interlaced because they are able to provide Hessian information for each other; however, the performance of the hybrid iterative method is dependent on the effective switch between the two methods. We have designed a new scheme to realize the dynamic switch between the two methods based on the decrease ratio (DR) of the misfit function (objective function), and we propose a modified hybrid iterative optimization method. In the new scheme, we compare the DR of the two methods for a given computational cost, and choose the method with a faster DR. Using these steps, the modified method always implements the most efficient method. The results of Marmousi and overthrust model testings indicate that the convergence with our modified method is significantly faster than that in the L-BFGS method with no loss of inversion quality. Moreover, our modified outperforms the enriched method by a little speedup of the convergence. It also exhibits better efficiency than the HFN method.展开更多
Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrow...Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrower frequency interval than the traditional OFDM waveform is proposed.Therefore,in the same frequency bandwidth,the DMC waveform contains more sub-carriers and provides more frequency diversity.Additionally,to further improve detection performance,a novel optimal weight accumulation target detection (OWATD)method is proposed,where the echo electromagnetic waves at different frequencies are accumulated with the optimal weight coefficients.Then,with the signal-to-noise ratio (SNR)of echo waveform approaching infinity,the asymptotic detection performance is analyzed, and the condition that the OWATD method with the DMC outperforms the matched filter with the OFDM is presented.Simulation results show that the DMC outperforms the OFDM in the target detection performance,and the OWATD method can further improve the detection performance of the traditional methods with both the OFDM and DMC radar waveform.展开更多
As a high quality seismic imaging method, full waveform inversion (FWI) can accurately reconstruct the physical parameter model for the subsurface medium. However, application of the FWI in seismic data processing i...As a high quality seismic imaging method, full waveform inversion (FWI) can accurately reconstruct the physical parameter model for the subsurface medium. However, application of the FWI in seismic data processing is computationally expensive, especially for the three-dimension complex medium inversion. Introducing blended source technology into the frequency-domain FWI can greatly reduce the computational burden and improve the efficiency of the inversion. However, this method has two issues: first, crosstalk noise is caused by interference between the sources involved in the encoding, resulting in an inversion result with some artifacts; second, it is more sensitive to ambient noise compared to conventional FWI, therefore noisy data results in a poor inversion. This paper introduces a frequency-group encoding method to suppress crosstalk noise, and presents a frequency- domain auto-adapting FWI based on source-encoding technology. The conventional FWI method and source-encoding based FWI method are combined using an auto-adapting mechanism. This improvement can both guarantee the quality of the inversion result and maximize the inversion efficiency.展开更多
文摘Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs.
基金jointly supported by Young Scientists Cultivation Fund Project of Harbin Engineering University(79000013/003)the Mount Taishan Industrial Leading Talent Project+1 种基金the Great and Special Project under Grant KJGG-2022-0104 of CNOOC Limitedthe National Natural Science Foundation of China(42006064,42106070,42074138)。
文摘The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.
基金supported by the National Natural Science Foundation of China (grant No. 42174156)the Young Science and Technology Star Project of Shaanxi Province (grant No. 2023KJXX-021)the Fundamental Research Funds for the Central Universities, CHD (grant Nos. 300102263401 and 300102264204)。
文摘Full-waveform inversion(FWI) uses the full information of seismic data to obtain a quantitative estimation of subsurface physical parameters. Anisotropic FWI has the potential to recover high-resolution velocity and anisotropy parameter models, which are critical for imaging the long-offset and wideazimuth data. We develop an acoustic anisotropic FWI method based on a simplified pure quasi P-wave(qP-wave) equation, which can be solved efficiently and is beneficial for the subsequent inversion.Using the inverse Hessian operator to precondition the functional gradients helps to reduce the parameter tradeoff in the multi-parameter inversion. To balance the accuracy and efficiency, we extend the truncated Gauss-Newton(TGN) method into FWI of pure qP-waves in vertical transverse isotropic(VTI) media. The inversion is performed in a nested way: a linear inner loop and a nonlinear outer loop.We derive the formulation of Hessian-vector products for pure qP-waves in VTI media based on the Lagrange multiplier method and compute the model update by solving a Gauss-Newton linear system via a matrix-free conjugate gradient method. A suitable preconditioner and the Eisenstat and Walker stopping criterion for the inner iterations are used to accelerate the convergence and avoid prohibitive computational cost. We test the proposed FWI method on several synthetic data sets. Inversion results reveal that the pure acoustic VTI FWI exhibits greater accuracy than the conventional pseudoacoustic VTI FWI. Additionally, the TGN method proves effective in mitigating the parameter crosstalk and increasing the accuracy of anisotropy parameters.
基金supported by the Major Research Plan on West-Pacific Earth System Multispheric Interactions (Nos.91858215,91958206)the National Natural Science Foundation of China (NSFC)Shiptime Sharing Project (No.41949581)the Key Research and Development Program of Shandong Province (No.2019GHY112019)。
文摘The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods for first-arrival picking based on sample points are characterized by theoretical errors,especially in low-sampling-frequency OBS data because the travel time of seismic waves is not an integer multiple of the sampling interval.In this paper,a first-arrival picking method that utilizes the spatial waveform variation characteristics of active source OBS data is presented.First,the distribution law of theoretical error is examined;adjacent traces exhibit variation characteristics in their waveforms.Second,a label cross-correlation superposition method for extracting highfrequency signals is presented to enhance the first-arrival picking precision.Results from synthetic and field data verify that the proposed approach is robust,successfully overcomes the limitations of low sampling frequency,and achieves precise outcomes that are comparable with those of high-sampling-frequency data.
基金supported by the National Natural Science Foundation of China(No.62171052 and No.61971054)the Fundamental Research Funds for the Central Universities(No.24820232023YQTD01).
文摘Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation.
基金partially supported by the National Key Research and Development Program of China(No.2018 AAA0100400)the Natural Science Foundation of Shandong Province(Nos.ZR2020MF131 and ZR2021ZD19)the Science and Technology Program of Qingdao(No.21-1-4-ny-19-nsh).
文摘Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-varying characteristics in sound propagation channels and cannot easily extract valuable waveform features.Sound propagation channels in seawater are time-and space-varying convolutional channels.In the extraction of the waveform features of underwater acoustic signals,the effect of high-accuracy underwater acoustic signal recognition is identified by eliminating the influence of time-and space-varying convolutional channels to the greatest extent possible.We propose a hash aggregate discriminative network(HADN),which combines hash learning and deep learning to minimize the time-and space-varying effects on convolutional channels and adaptively learns effective underwater waveform features to achieve high-accuracy underwater pulse waveform recognition.In the extraction of the hash features of acoustic signals,a discrete constraint between clusters within a hash feature class is introduced.This constraint can ensure that the influence of convolutional channels on hash features is minimized.In addition,we design a new loss function called aggregate discriminative loss(AD-loss).The use of AD-loss and softmax-loss can increase the discriminativeness of the learned hash features.Experimental results show that on pool and ocean datasets,which were collected in pools and oceans,respectively,by using acoustic collectors,the proposed HADN performs better than other comparative models in terms of accuracy and mAP.
基金supported in part by the National Natural Science Foundation of China under Grant 62271142in part by the Key Research and Development Program of Jiangsu Province BE2023021+2 种基金in part by the Jiangsu Key Research and Development Program Project under Grant BE2023011-2in part by the Young Scholar Funding of Southeast Universityin part by the Fundamental Research Funds for the Central Universities 2242022k60001。
文摘In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication multi-user interference(MUI)and the gap between dual-use waveform and ideal radar waveform is minimized with peak-toaverage power ratio(PAPR)constraints.We propose an efficient algorithm based on alternating direction method of multipliers(ADMM),which is able to decouple multiple variables and provide a closed-form solution for each subproblem.In addition,to improve the sensing performance in both spatial and temporal domains,we propose a new criteria to design the ideal radar waveform,in which the beam pattern is made similar to the ideal one and the integrated sidelobe level of the ambiguity function in each target direction is minimized in the region of interest.The limited memory Broyden-Fletcher-Goldfarb-Shanno(LBFGS)algorithm is applied to the design of the ideal radar waveform which works as a reference in the design of the dual-function waveform.Numerical results indicate that the designed dual-function waveform is capable of offering good communication quality of service(QoS)and sensing performance.
基金supported by Technology Innovation Special Project of Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine.
文摘Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants with primary dysmenorrhea were randomly divided into dense-sparse wave,continuous wave,and discontinuous wave groups in a 1:1:1 ratio.Two lateral Ciliao(BL 32)points were used.All three groups started treatment 3–5 days before menstruation,once a day for six sessions per course of treatment,one course of treatment per menstrual cycle,and three menstrual cycles.The primary outcome measure was the proportion with an average visual analog scale(VAS)score reduction of≥50%from baseline for dysmenorrhea in the third menstrual cycle during treatment.The secondary outcome measures included changes in dysmenorrhea VAS scores,Cox Menstrual Symptom Scale scores and the proportion of patients taking analgesic drugs.Results: The proportion of cases where the average VAS score for dysmenorrhea decreased by≥50%from baseline in the third menstrual cycle was not statistically significant(P>.05).Precisely 30 min after acupuncture and regarding immediate analgesia on the most severe day of dysmenorrhea,there was a statistically significant difference in the dense-sparse wave group compared with the other two groups during the third menstrual cycle(P<.05).Additionally,there was a statistically significant difference between the dense-sparse wave and discontinuous wave groups 24 h after acupuncture(P<.05).Conclusions: Waveform electroacupuncture can alleviate primary dysmenorrhea and its related symptoms in patients.The three groups showed similar results in terms of short-and long-term analgesic efficacy and a reduction in the number of patients taking analgesic drugs.Regarding achieving immediate analgesia,the dense-sparse wave group was slightly better than the other two groups.
文摘Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with uncertainties, especially in marginal fields. An approach is employed in this study that integrated rock physics and waveform inverse modelling for lithology and fluid-type characterization to appropriately identify potential hydrocarbon saturated zones and their corresponding lithology. Seismic and well-log data were analyzed using Hampson Russel software. The method adopted includes lithofacies and fluid content analysis using rock physics parameters and seismic simultaneous inverse modelling. Rock physics analysis identified 2 broad reservoirs namely: HDZ1 and HDZ2 reservoirs. Results from the inverse modelling showed that low values of acoustic impedance from 19,743 to 20,487 (ft/s)(g/cc) reflect hydrocarbon-bearing reservoirs while medium to high values shows brine and shale respectively, with brine zone ranging from 20,487 to 22,531 (ft/s)(g/cc) and shale above 22,531 (ft/s)(g/cc). Two lithofacies were identified from inversion analysis of Vp/Vs and Mu-Rho, namely: sand and shale with VpVs 1.95 values respectively. Mu-Rho > 12.29 (GPa)(g/cc) and <12.29 (GPa) (g/cc) represent sand and shale respectively. From 3D volume, it was observed that a high accumulation of hydrocarbon was observed to be saturated at the north to the eastern part of the field forming a meandering channel. Sands were mainly distributed around the northeastern to the southwestern part of the field, that tends to be away from Well 029. This was also validated by the volume of rigidity modulus (Mu-Rho) showing high values indicating sands fall within the northeastern part of the field.
基金State Natural Scientific Foundation (49734150) and National High Performance Computation Foundation.
文摘We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.
文摘A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.
基金supported by the China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2011ZX05004-003)the Basic Research Programs of CNPC during the 12th Five-Year Plan Period (NO.2011A-3603)+1 种基金the Natural Science Foundation of China (No.41104066)the RIPED Young Professional Innovation Fund (NO.2010-13-16-02, 2010-A-26-02)
文摘Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.
基金The National Natural Science Foundation of China(No.61240032)the Natural Science Foundation of Jiangsu Province(No.BK2012560)+1 种基金the College Scientific and Technological Achievements Transformation Promotion Project of Jiangsu Province(No.JH-05)the Science and Technology Support Program of Jiangsu Province(No.BE2012740)
文摘In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.
文摘The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted. With one-dimension stress wave theory, ANSYS/LS-DYNA software and experiment, the effect rules of the projectile's front-head style and the accelerometer's mounted base's length on acceleration waveform were analyzed. The results show that the acceleration duration inspired from Hopkinson bar is almost equal to the rising edge time of perfect half sine stress wave, and it is independent to the mounted base's length. Moreover, the projectile's fronthead style is a main affecting factor, and the projectiles with less Conical degrees will produce the lower amplitude and longer acceleration duration.
文摘In most effective bits evaluation of waveform recorders, the prerequisite is that there is no signal source distortion, or the distortion can be neglected. But when the distortion can be neglected or how it affects the evaluation when it can't be neglected it is not determined yet. In this paper, the influence of signal source distortion to the evaluation of the effective bits of waveform recorders is discussed, then, the correction method of the effective bits error caused by the distortion influence is given. Finally , the error limit of the effective bits is given and how to selecte the calibrator is introduced. In the end , some simulation results of the new method in test are described.
文摘Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtain the HRR profile of a target. For moving targets which are of great importance in practical radar usage, autofocusing,i.e. phase correction, is a necessary and critical step of the synthetic HRR processing. The purpose of autofocusing is to remove the radial motion effect of the target from radar echoes, and only reserve the stepped frequency effect which is the basis of synthetic HRR capability. We investigate two autofocusing approaches for synthetic HRR radars using stepped frequency waveform in this paper. The first is motion fitting method. This method depends on a certain parametric model, and is computationally expensive. Then we propose the iterative dominant scatterer method. It is robust, non parametric and simple in computation in comparison with the motion fitting method. Experimental results based on data acquired by using a metallised scale model B 52 in a microwave anechoic chamber reveal the validity and effectiveness of the method.
基金financially supported by the National Important and Special Project on Science and Technology(2011ZX05005-005-007HZ)the National Natural Science Foundation of China(No.41274116)
文摘In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the Hessian matrix and its inverse. Although the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) or Hessian-free inexact Newton (HFN) methods are able to use approximate Hessian information, the information they collect is limited. The two methods can be interlaced because they are able to provide Hessian information for each other; however, the performance of the hybrid iterative method is dependent on the effective switch between the two methods. We have designed a new scheme to realize the dynamic switch between the two methods based on the decrease ratio (DR) of the misfit function (objective function), and we propose a modified hybrid iterative optimization method. In the new scheme, we compare the DR of the two methods for a given computational cost, and choose the method with a faster DR. Using these steps, the modified method always implements the most efficient method. The results of Marmousi and overthrust model testings indicate that the convergence with our modified method is significantly faster than that in the L-BFGS method with no loss of inversion quality. Moreover, our modified outperforms the enriched method by a little speedup of the convergence. It also exhibits better efficiency than the HFN method.
基金The National Natural Science Foundation of China(No.61271204)the National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrower frequency interval than the traditional OFDM waveform is proposed.Therefore,in the same frequency bandwidth,the DMC waveform contains more sub-carriers and provides more frequency diversity.Additionally,to further improve detection performance,a novel optimal weight accumulation target detection (OWATD)method is proposed,where the echo electromagnetic waves at different frequencies are accumulated with the optimal weight coefficients.Then,with the signal-to-noise ratio (SNR)of echo waveform approaching infinity,the asymptotic detection performance is analyzed, and the condition that the OWATD method with the DMC outperforms the matched filter with the OFDM is presented.Simulation results show that the DMC outperforms the OFDM in the target detection performance,and the OWATD method can further improve the detection performance of the traditional methods with both the OFDM and DMC radar waveform.
基金financially supported by the National Natural Science Foundation of China(No.41074075/D0409)the National Science and Technology Major Project(No.2011ZX05025-001-04)
文摘As a high quality seismic imaging method, full waveform inversion (FWI) can accurately reconstruct the physical parameter model for the subsurface medium. However, application of the FWI in seismic data processing is computationally expensive, especially for the three-dimension complex medium inversion. Introducing blended source technology into the frequency-domain FWI can greatly reduce the computational burden and improve the efficiency of the inversion. However, this method has two issues: first, crosstalk noise is caused by interference between the sources involved in the encoding, resulting in an inversion result with some artifacts; second, it is more sensitive to ambient noise compared to conventional FWI, therefore noisy data results in a poor inversion. This paper introduces a frequency-group encoding method to suppress crosstalk noise, and presents a frequency- domain auto-adapting FWI based on source-encoding technology. The conventional FWI method and source-encoding based FWI method are combined using an auto-adapting mechanism. This improvement can both guarantee the quality of the inversion result and maximize the inversion efficiency.