期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Wavefront measurement of a multilens optical system based on phase measuring deflectometry
1
作者 陈贞屹 赵文川 +2 位作者 张启灿 彭进 侯俊勇 《Chinese Optics Letters》 SCIE EI CAS CSCD 2023年第4期14-20,共7页
Usually,a multilens optical system is composed of multiple undetectable sublenses.Wavefront of a multilens optical system cannot be measured when classical transmitted phase measuring deflectometry[PMD] is used.In thi... Usually,a multilens optical system is composed of multiple undetectable sublenses.Wavefront of a multilens optical system cannot be measured when classical transmitted phase measuring deflectometry[PMD] is used.In this study,a wavefront measuring method for an optical system with multiple optics is presented based on PMD.A paraxial plane is used to represent the test multilens optical system.We introduce the calibration strategy and mathematical deduction of gradient equations.Systematic errors are suppressed with an N-rotation test.Simulations have been performed to demonstrate our method.The results showing the use of our method in multilens optical systems,such as the collimator and single-lens reflex camera lenses show that the measurement accuracy is comparable with those of interferometric tests. 展开更多
关键词 phase measuring deflectometry wavefront measurement systematic errors CALIBRATION
原文传递
Hyperspectral compressive wavefront sensing
2
作者 Sunny Howard Jannik Esslinger +2 位作者 Robin HWWang Peter Norreys Andreas Döpp 《High Power Laser Science and Engineering》 SCIE EI CAS CSCD 2023年第3期1-7,共7页
Presented is a novel way to combine snapshot compressive imaging and lateral shearing interferometry in order to capture the spatio-spectral phase of an ultrashort laser pulse in a single shot.A deep unrolling algorit... Presented is a novel way to combine snapshot compressive imaging and lateral shearing interferometry in order to capture the spatio-spectral phase of an ultrashort laser pulse in a single shot.A deep unrolling algorithm is utilized for snapshot compressive imaging reconstruction due to its parameter efficiency and superior speed relative to other methods,potentially allowing for online reconstruction.The algorithm’s regularization term is represented using a neural network with 3D convolutional layers to exploit the spatio-spectral correlations that exist in laser wavefronts.Compressed sensing is not typically applied to modulated signals,but we demonstrate its success here.Furthermore,we train a neural network to predict the wavefronts from a lateral shearing interferogram in terms of Zernike polynomials,which again increases the speed of our technique without sacrificing fidelity.This method is supported with simulation-based results.While applied to the example of lateral shearing interferometry,the methods presented here are generally applicable to a wide range of signals,including Shack-Hartmann-type sensors.The results may be of interest beyond the context of laser wavefront characterization,including within quantitative phase imaging. 展开更多
关键词 artificial neural networks compressed sensing high-power laser characterization wavefront measurement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部