期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Machine learning ensemble model prediction of northward shift in potato cyst nematodes(Globodera rostochiensis and G.pallida)distribution under climate change conditions
1
作者 Yitong He Guanjin Wang +3 位作者 Yonglin Ren Shan Gao Dong Chu Simon J.McKirdy 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3576-3591,共16页
Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosec... Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies,especially given the impact of climate change on pest species invasion and distribution.Machine learning(ML),specifically ensemble models,has emerged as a powerful tool in predicting species distributions due to its ability to learn and make predictions based on complex data sets.Thus,this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions,providing the initial element for invasion risk assessment.We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors.Then,five machine learning models were employed to build two groups of ensembles,single-algorithm ensembles(ESA)and multi-algorithm ensembles(EMA),and compared their performances.In this research,the EMA did not always perform better than the ESA,and the ESA of Artificial Neural Network gave the highest performance while being cost-effective.Prediction results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes.However,the total area of suitable regions will not change significantly,occupying 16-20%of the total land surface(18%under current conditions).This research alerts policymakers and practitioners to the risk of PCNs’incursion into new regions.Additionally,this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control. 展开更多
关键词 invasive species distribution future climates homogeneous climate predictors single-algorithm ensembles multi-algorithm ensembles artificial neural network
下载PDF
How to improve machine learning models for lithofacies identification by practical and novel ensemble strategy and principles 被引量:2
2
作者 Shao-Qun Dong Yan-Ming Sun +4 位作者 Tao Xu Lian-Bo Zeng Xiang-Yi Du Xu Yang Yu Liang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期733-752,共20页
Typically, relationship between well logs and lithofacies is complex, which leads to low accuracy of lithofacies identification. Machine learning (ML) methods are often applied to identify lithofacies using logs label... Typically, relationship between well logs and lithofacies is complex, which leads to low accuracy of lithofacies identification. Machine learning (ML) methods are often applied to identify lithofacies using logs labelled by rock cores. However, these methods have accuracy limits to some extent. To further improve their accuracies, practical and novel ensemble learning strategy and principles are proposed in this work, which allows geologists not familiar with ML to establish a good ML lithofacies identification model and help geologists familiar with ML further improve accuracy of lithofacies identification. The ensemble learning strategy combines ML methods as sub-classifiers to generate a comprehensive lithofacies identification model, which aims to reduce the variance errors in prediction. Each sub-classifier is trained by randomly sampled labelled data with random features. The novelty of this work lies in the ensemble principles making sub-classifiers just overfitting by algorithm parameter setting and sub-dataset sampling. The principles can help reduce the bias errors in the prediction. Two issues are discussed, videlicet (1) whether only a relatively simple single-classifier method can be as sub-classifiers and how to select proper ML methods as sub-classifiers;(2) whether different kinds of ML methods can be combined as sub-classifiers. If yes, how to determine a proper combination. In order to test the effectiveness of the ensemble strategy and principles for lithofacies identification, different kinds of machine learning algorithms are selected as sub-classifiers, including regular classifiers (LDA, NB, KNN, ID3 tree and CART), kernel method (SVM), and ensemble learning algorithms (RF, AdaBoost, XGBoost and LightGBM). In this work, the experiments used a published dataset of lithofacies from Daniudi gas field (DGF) in Ordes Basin, China. Based on a series of comparisons between ML algorithms and their corresponding ensemble models using the ensemble strategy and principles, conclusions are drawn: (1) not only decision tree but also other single-classifiers and ensemble-learning-classifiers can be used as sub-classifiers of homogeneous ensemble learning and the ensemble can improve the accuracy of the original classifiers;(2) the ensemble principles for the introduced homogeneous and heterogeneous ensemble strategy are effective in promoting ML in lithofacies identification;(3) in practice, heterogeneous ensemble is more suitable for building a more powerful lithofacies identification model, though it is complex. 展开更多
关键词 Lithofacies identification Machine learning ensemble learning strategy ensemble principle homogeneous ensemble Heterogeneous ensemble
下载PDF
Ensemble Variable Selection for Naive Bayes to Improve Customer Behaviour Analysis
3
作者 R.Siva Subramanian D.Prabha 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期339-355,共17页
Executing customer analysis in a systemic way is one of the possible solutions for each enterprise to understand the behavior of consumer patterns in an efficient and in-depth manner.Further investigation of customer p... Executing customer analysis in a systemic way is one of the possible solutions for each enterprise to understand the behavior of consumer patterns in an efficient and in-depth manner.Further investigation of customer patterns helps thefirm to develop efficient decisions and in turn,helps to optimize the enter-prise’s business and maximizes consumer satisfaction correspondingly.To con-duct an effective assessment about the customers,Naive Bayes(also called Simple Bayes),a machine learning model is utilized.However,the efficacious of the simple Bayes model is utterly relying on the consumer data used,and the existence of uncertain and redundant attributes in the consumer data enables the simple Bayes model to attain the worst prediction in consumer data because of its presumption regarding the attributes applied.However,in practice,the NB pre-mise is not true in consumer data,and the analysis of these redundant attributes enables simple Bayes model to get poor prediction results.In this work,an ensem-ble attribute selection methodology is performed to overcome the problem with consumer data and to pick a steady uncorrelated attribute set to model with the NB classifier.In ensemble variable selection,two different strategies are applied:one is based upon data perturbation(or homogeneous ensemble,same feature selector is applied to a different subsamples derived from the same learning set)and the other one is based upon function perturbation(or heterogeneous ensemble different feature selector is utilized to the same learning set).Further-more,the feature set captured from both ensemble strategies is applied to NB indi-vidually and the outcome obtained is computed.Finally,the experimental outcomes show that the proposed ensemble strategies perform efficiently in choosing a steady attribute set and increasing NB classification performance efficiently. 展开更多
关键词 Naive bayes or simple bayes variable selection homogeneous ensemble heterogeneous ensemble customer prediction
下载PDF
二维各向同性谐振子的双波描述 被引量:4
4
作者 黄湘友 郝剑红 叶学敏 《量子光学学报》 CSCD 1999年第2期63-72,共10页
二维各向同性谐振子体系除哈密顿量外还有三个独立的守恒量。这体系有三套不同的定态波函数。在双波理论中相应于这三套定态波函数有三种对这体系的双波描述。本文给出了对这些不同描述的比较。
关键词 各向同性谐振子 双波函数 系综 二维 量子力学
下载PDF
一种支持向量机集成的核选择方法 被引量:5
5
作者 王敏 王文剑 《计算机工程与应用》 CSCD 北大核心 2009年第27期31-33,55,共4页
核选择问题是支持向量机(Support Vector Machine,SVM)建模中的一个关键问题,虽然支持向量机具有良好的泛化性能,但其性能受核函数的影响比较明显,而对于一个给定问题,选择合适的核函数及参数通常很困难。提出一种基于SVM集成的核选择方... 核选择问题是支持向量机(Support Vector Machine,SVM)建模中的一个关键问题,虽然支持向量机具有良好的泛化性能,但其性能受核函数的影响比较明显,而对于一个给定问题,选择合适的核函数及参数通常很困难。提出一种基于SVM集成的核选择方法,利用不同的核函数构造子SVM学习器,然后对子学习器的预测结果集成。提出的核选择方法将SVM集成学习与核选择同时进行,不仅避免了单个SVM的核选择对泛化能力的影响,而且可以获得良好的泛化能力。在UCI标准数据集上的结果说明了提出的方法的有效性。 展开更多
关键词 支持向量机 集成学习 核选择 异质SVM 同质SVM
下载PDF
二维谐振子量子运动的新探讨 被引量:1
6
作者 马为川 田旭 《湖北大学学报(自然科学版)》 CAS 1995年第2期156-160,共5页
二维谐振子的量子力学描述在经典极限下过渡到经典统计力学而不是经典力学。给出二维谐振子量子运动的双波描述,这双波描述在经典极限下过渡到经典力学,量子力学描述是这双波描述的一种统计情况。
关键词 二维谐维子 量子力学 最子运动 谐振子
下载PDF
量子力学统计性的根源
7
作者 黄报星 《江汉大学学报(社会科学版)》 2002年第3期9-11,共3页
在经典极限讨论量子力学波函数的分布函数,经典力学单粒子体系与经典力学均匀系综在相空间中的分布函数、说明量子力学波函数不能描述单粒子体系,而只能描述系综.这就是量子力学统计性的根源.
关键词 量子力学 波函数 系综 相空间 统计性 分布函数 单粒子体系
下载PDF
Klein-Gordon理论中类氢原子波函数的经典极限
8
作者 强稳朝 《新疆大学学报(自然科学版)》 CAS 1998年第3期44-48,52,共6页
本文根据齐次系综的概念,求出了氢原子中相对论性电子的分布函数和同一电子在Klein-Gor-don理论中的密数函数.结果表明相对论量子力学中类氢原子波函数的经典极限描述一个齐次系综.
关键词 类氢原子 K-G理论 量子力学 波函数 经典极限
下载PDF
1909~2021年长春市极端气温多尺度变化特征及其与大尺度气候指数的关系 被引量:3
9
作者 余清波 曹丽娟 +4 位作者 李珍 王程程 张一博 朱亚妮 王丽丽 《气候与环境研究》 CSCD 北大核心 2023年第4期437-449,共13页
基于1909~2021年长春市均一化逐日最高气温、最低气温资料,评估了百年来长春市气温增暖特征并量化了城市化影响的贡献率,揭示了关键极端气温指数的多尺度变化特征,并探讨不同尺度上极端气温指数与太平洋年代际振荡(Pacific Decadal Osci... 基于1909~2021年长春市均一化逐日最高气温、最低气温资料,评估了百年来长春市气温增暖特征并量化了城市化影响的贡献率,揭示了关键极端气温指数的多尺度变化特征,并探讨不同尺度上极端气温指数与太平洋年代际振荡(Pacific Decadal Oscillation,PDO)和大西洋年代际振荡(Atlantic Multidecadal Oscillation,AMO)的关系。结果表明:1909~2021年长春市年平均气温增暖速率为2.93℃/100 a,1909~2015年间城市化影响的贡献率为56.22%。暖指数(夏日日数SU25、暖昼日数TX90p、暖夜日数TN90p、暖日持续日数WSDI)在波动中呈上升趋势,而冷指数(霜冻日数FD0、冷日日数TX10p、冷夜日数TN10p、冷日持续日数CSDI)则呈显著减少趋势。准3年为主的年际震荡、35年为主的年代际震荡和105年为主的多年代际震荡在多个气温指数演变过程中占据主导地位。多数极端气温指数的变化由反映年际变化的前两个固有模态函数和反映长期趋势的残余分量所决定。在年际和多年代际尺度上,暖指数的变化多与同期AMO指数呈显著正相关,同相位变化特征显著,但与PDO指数呈负相关;冷指数则与之相反。 展开更多
关键词 均一化 极端气温 集合经验模态分解(EEMD) 多尺度变化特征 百年尺度 长春市
下载PDF
基于均一化数据的1960—2021年中国蒸发皿蒸发量时空变化特征 被引量:2
10
作者 秦鹏飞 赵天保 +1 位作者 曹建荣 李珍 《气象学报》 CAS CSCD 北大核心 2023年第3期478-491,共14页
基于序列均一性多元分析(MASH)和Climatol均一化方法,对1960—2021年中国573个气象站逐月蒸发皿蒸发量(PE)观测数据进行非均一化检验与订正,通过对比两种方法检测到的非均一性台站数、断点数、订正幅度等,定量评估均一化结果的不确定性... 基于序列均一性多元分析(MASH)和Climatol均一化方法,对1960—2021年中国573个气象站逐月蒸发皿蒸发量(PE)观测数据进行非均一化检验与订正,通过对比两种方法检测到的非均一性台站数、断点数、订正幅度等,定量评估均一化结果的不确定性。基于等权重集合均一化逐月蒸发皿蒸发量序列数据集揭示了近60年中国年、季节蒸发皿蒸发量的时、空演变特征。结果表明:MASH和Climatol均能有效检测出逐月序列中的非均一性断点,前者检测到的非均一性台站数较少、断点数较多但订正幅度较小。集合均一化序列表明:1960—2021年中国平均的冬、秋季蒸发皿蒸发量增大速率分别为0.27和1.10 mm/(10 a),春、夏季和全年的下降速率分别为8.38、9.83和16.83 mm/(10 a)。订正后蒸发皿蒸发量在春、夏季和全年大部分观测站呈下降趋势,分别占81.7%、80.8%和80.3%,冬、秋季多呈上升趋势,分别占57.1%和60.4%。冬季在东北、青藏高原东部、华南、西南(云南除外)地区呈上升趋势;春季除华东沿海、陕西南部、川渝北部及湖北西部等地区外,其他大部分地区均呈下降趋势;夏季大部分地区呈下降趋势,特别是华北以南的东部地区;秋季除东北西北部、新疆西北部、内蒙古中部延伸至青藏高原东部一带呈下降趋势外,其他地区呈上升趋势;全年在新疆西北部、内蒙古中部、山东、河北南部及河南、云南中部等地区呈下降趋势。与订正前相比,冬、夏季变化趋弱,春、秋季和全年变化趋强;季节、年变化趋势范围均缩小,下降速率小于10 mm/(10 a)或上升速率大于30 mm/(10 a)的站数均减少,大尺度变化趋势的空间一致性趋好。春、秋、冬季及全年蒸发皿蒸发量分别在1977、2018和2020、2020及1972年存在突变,夏季不存在突变。 展开更多
关键词 蒸发皿蒸发量 集合均一化 时空变化特征 突变性 中国
下载PDF
Effective Elastic Properties of 3-Phase Particle Reinforced Composites with Randomly Dispersed Elastic Spherical Particles of Different Sizes Dedicated to Professor Karl Stark Pister for his 95th birthday 被引量:1
11
作者 Yu-Fu Ko Jiann-Wen Woody Ju 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第12期1305-1328,共24页
Higher-order multiscale structures are proposed to predict the effective elastic properties of 3-phase particle reinforced composites by considering the probabilistic spherical particles spatial distribution,the parti... Higher-order multiscale structures are proposed to predict the effective elastic properties of 3-phase particle reinforced composites by considering the probabilistic spherical particles spatial distribution,the particle interactions,and utilizing homogenization with ensemble volume average approach.The matrix material,spherical particles with radius a1,and spherical particles with radius a2,are denoted as the 0th phase,the 1st phase,and the 2nd phase,respectively.Particularly,the two inhomogeneity phases are different particle sizes and the same elastic material properties.Improved higher-order(in ratio of spherical particle sizes to the distance between the centers of spherical particles)bounds on effective elastic properties of 3-phase particle reinforced proposed Formulation II and Formulation I derive composites.As a special case,i.e.,particle size of the 1st phase is the same as that of the 2nd phase,the proposed formulations reduce to 2-phase formulas.Our theoretical predictions demonstrate excellent agreement with selected experimental data.In addition,several numerical examples are presented to demonstrate the competence of the proposed frameworks. 展开更多
关键词 Particle reinforced composites MICROMECHANICS spherical particle interactions ensemble volume average HOMOGENIZATION probabilistic spatial distribution higher-order bounds multiscale
下载PDF
单向复合材料均质化弹性性能预测的集成学习模型:基于SHAP方法的可解释性分析
12
作者 王文照 赵云妹 李岩 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第3期109-122,共14页
本研究提出了一种可解释的集成学习(EML)数据驱动方法,用于快速预测单向纤维增强复合材料的均质化弹性性能.我们选择了三种机器学习模型――随机森林(RF)、极端梯度提升机(XGBoost)和轻量梯度提升机(LGBM)来构建EML模型.基于实验并建立... 本研究提出了一种可解释的集成学习(EML)数据驱动方法,用于快速预测单向纤维增强复合材料的均质化弹性性能.我们选择了三种机器学习模型――随机森林(RF)、极端梯度提升机(XGBoost)和轻量梯度提升机(LGBM)来构建EML模型.基于实验并建立微观纤维分布的概率统计模型,结合有限元仿真,建立了反映纤维随机分布特征的代表性体元(RVE)模型,并创建相关数据集.通过准确性、效率、可解释性和泛化性等指标对EML模型的性能进行了全面评估,研究结果表明:(1)EML模型有效提升了基机器学习模型的预测精度(R2=0.962,MS E=5.41);(2)我们使用基于合作博弈理论的SHAP可解释性方法对预测结果进行了分析,其中,全局解释发现纤维的体积含量是影响复合材料均质化弹性性能的决定性变量,而局部解释阐明了输入特征对预测结果的关键影响机制;(3)EML模型在实验数据上表现出良好的泛化能力,计算结果与实验数据吻合度高,实现了复合材料均质化弹性性能的高效精准预测. 展开更多
关键词 Composite materials HOMOGENIZATION ensemble learning INTERPRETATION Model generalization
原文传递
基于半监督学习的数据流集成分类算法 被引量:18
13
作者 徐文华 覃征 常扬 《模式识别与人工智能》 EI CSCD 北大核心 2012年第2期292-299,共8页
已有的数据流分类算法多采用有监督学习,需要使用大量已标记数据训练分类器,而获取已标记数据的成本很高,算法缺乏实用性.针对此问题,文中提出基于半监督学习的集成分类算法SEClass,能利用少量已标记数据和大量未标记数据,训练和更新集... 已有的数据流分类算法多采用有监督学习,需要使用大量已标记数据训练分类器,而获取已标记数据的成本很高,算法缺乏实用性.针对此问题,文中提出基于半监督学习的集成分类算法SEClass,能利用少量已标记数据和大量未标记数据,训练和更新集成分类器,并使用多数投票方式对测试数据进行分类.实验结果表明,使用同样数量的已标记训练数据,SEClass算法与最新的有监督集成分类算法相比,其准确率平均高5.33%.且运算时间随属性维度和类标签数量的增加呈线性增长,能够适用于高维、高速数据流分类问题. 展开更多
关键词 属性权值 概念漂移 集成分类器 同质性 K均值聚类 半监督学习 数据流分类
原文传递
基于集成聚类均质度与储层地质边界度联合的测井曲线自动分层 被引量:1
14
作者 曹志民 阳璨 +3 位作者 陈树民 赵海波 韩建 牟海维 《地球物理学进展》 CSCD 北大核心 2023年第2期641-653,共13页
现有的储层分层方法主要对焦于地质边缘奇异点的理解,而忽略了储层相应曲线集隐含的均质性信息.为此,开展了基于集成聚类的均质度与储层地质边界度联合测井曲线自动分层方法研究.具体地,通过利用集成聚类联合共生关联矩阵进行均质地层... 现有的储层分层方法主要对焦于地质边缘奇异点的理解,而忽略了储层相应曲线集隐含的均质性信息.为此,开展了基于集成聚类的均质度与储层地质边界度联合测井曲线自动分层方法研究.具体地,通过利用集成聚类联合共生关联矩阵进行均质地层信息的编码,提取曲线均质度特征,并利用简单的阈值分割实现对均质地质区域的初始分割;同时,为对区域信息形成补充,提出了一种相关差特征获取曲线集各点的地质边界度.通过联合应用测井曲线集蕴含的均质区域信息与异构(奇异)地质边缘信息实现了一种灵活利用测井曲线集进行自动分层的方法.取用自然伽马、井径等7条常规测井曲线,对大庆油田陆相坳陷盆地齐家凹陷工区多口井进行实验与应用,研究结果表明,相对于传统分层方法更加准确高效,精度更高,特别在工区内的薄层和薄互层上取得较好的应用效果,不仅能高效稳定的实现单砂体级别的储层目标自动精细分层,还在一定程度上增加了对人工解译结果的补充,具有一定的实用性,可为提高测井储层解释的准确性提供较可靠的分层依据. 展开更多
关键词 地球物理测井 集成聚类 共生关联矩阵 均质度 边界度 自动分层
原文传递
多光子Jaynes-Cummings模型的双波函数描述
15
作者 周鹏 《光电子.激光》 EI CAS CSCD 北大核心 1992年第3期133-135,164,共4页
本文应用双波函数理论处理了多光子Jaynes—Cummings模型,给出了各力学量的测量值,并指出通常量子力学理论对这一模型处理的结果实际上是系综的平均值。
关键词 双波函数 多光子模型
原文传递
双波理论中的弥散困难及其消除的探索
16
作者 王伟奉 徐学基 《复旦学报(自然科学版)》 CAS CSCD 北大核心 1994年第3期275-280,共6页
简评了一种新的量子理论一决定论性的双波理论,指出了该理论中的弥散困难,该困难混淆了一些基本概念,使其难以自洽.研究了三种典型情况,重新选择了一对波函数,消除了弥散.
关键词 双波理论 弥散困难 量子力学
原文传递
Determination of superheat limit of liquids using fluctuation theory
17
作者 曾丹苓 敬成君 《Science China Mathematics》 SCIE 1996年第3期301-308,共8页
The theoretical superheat limit of liquids in homogeneous nucleate boiling is determined. A new hypothesis to define the superheat limit is proposed on the basis of the fluctuation theory in statistical thermodynamics... The theoretical superheat limit of liquids in homogeneous nucleate boiling is determined. A new hypothesis to define the superheat limit is proposed on the basis of the fluctuation theory in statistical thermodynamics. Using Gibbs canonical and grand canonical ensemble formulas, the superheat limit are derived. The numerical results are in good agreement with those in literature. 展开更多
关键词 SUPERHEAT limit FLUCTUATION theory Gibbs CANONICAL ensemble GRAND CANONICAL ensemble homogeneous nucleate boiling.
原文传递
Classical Limit of Quantum Mechanics
18
作者 黄湘友 《Science China Mathematics》 SCIE 1993年第2期181-190,共10页
Because of the use of different limiting procedures, there are two conflict conclusions on wave function. One is that a wave function can describe a single particle and the other is that it can only describe an ensemb... Because of the use of different limiting procedures, there are two conflict conclusions on wave function. One is that a wave function can describe a single particle and the other is that it can only describe an ensemble in the classical limit. In this paper the limiting procedures have been compared. We put the synthesized limit n→∞, (?)→0 but keep E(n,(?)) to be the actual measured value of energy. Under this limit condition, we can not only prove that a wave function can only describe an ensemble, but also can make clear the dynamical behavior of the particles of the ensemble. Calculations show that the reason why quantum mechanics cannot describe a particle is not because of the motion equation but because of the definition of state for the particle. 展开更多
关键词 CLASSICAL LIMIT homogeneous ensemble distribution function.
原文传递
Thermal Conductivity of Complex Plasmas Using Novel Evan-Gillan Approach
19
作者 Aamir Shahzad Syed Irfan Haider +3 位作者 Muhammad Kashif Muhammad Shahzad Shifa Tariq Munir Mao-Gang He 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第6期704-710,共7页
The thermal conductivity of complex fluid materials (dusty plasmas) has been explored through novel Evan-Gillan homogeneous non-equilibrium molecular dynamic (HNEMD) algorithm. The thermal conductivity coefficient... The thermal conductivity of complex fluid materials (dusty plasmas) has been explored through novel Evan-Gillan homogeneous non-equilibrium molecular dynamic (HNEMD) algorithm. The thermal conductivity coefficient obtained from HNEMD is dependent on various plasma parameters (T,k). The proposed algorithm gives accurate results with fast convergence and small size effect over a wide range of plasma parameters. The cross microscopic heat energy current is discussed in association with variation of temperature (1/Г) and external perturbations (Pz). The thermal conductivity obtained from HNEMD simulations is found to be very good agreement and more reliable than previously known numerical techniques of equilibrium molecular dynarnic, nonequilibrium molecular dynamic simulations. Our new investigations point to an effective conclusion that the thermal conductivity of complex dusty plasmas is dependent on an extensive range of plasma coupling (P) and screening parameter (k) and it varies by the alteration in these parameters. It is also shown that a different approach is used for computations of thermal conductivity in 2D complex plasmas and can be appropriate method for behaviors of complex systems. 展开更多
关键词 complex dusty plasma homogenous nonequilibrium molecular dynamics canonical ensemble scaling law thermal conductivity Yukawa liquids
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部