With the help of the effective refractive index method we have numerically analyzed a multilayer planar waveguide structure and calculated the propagation constants, confinement factors, and transverse electric (TE) m...With the help of the effective refractive index method we have numerically analyzed a multilayer planar waveguide structure and calculated the propagation constants, confinement factors, and transverse electric (TE) modes. A five-layer waveguide model has been provided to analyze the electro-magne tic wave propagation process. The analysis method has been applied to the 980 nm laser with active layer of GaInAs/GaInAsP strained quantum wells, GaInAsP confinement layers and GaInP cap layers. By changing the thickness of confinement layers, we obtained confinement factor as high as 95% with higher TE modes TE1 and TE2. The results are in good agreement with the experiment by A. Al-Muhanna et al. and give the new idea to enhance output power of semiconductor lasers. The analysis method can also be extended to any other slab multilayer waveguide structures, and the results are useful to the fabrication of optic-electronic devices.展开更多
TEn mode (whose electric field is zero in the normal direction of the boundaries between layers) and TMn mode (whose magnetic field is zero in the normal direction of the boundaries between layers) are defined. Then c...TEn mode (whose electric field is zero in the normal direction of the boundaries between layers) and TMn mode (whose magnetic field is zero in the normal direction of the boundaries between layers) are defined. Then conditions under which pure TEn (TMn) modes may exist in multilayer waveguide structure with discontinuities are presented. E (H) step wavguides, ridged wavguides, microstrip lines and fin lines all satisfy the conditions, and hold for TEn (TMn) mode. The conventional conclusion that ridged waveguides with inhomogeneous dielectric-slab loading, microstrip lines and fin lines only hold for hybrid modes is revised. Compared with hybrid modes, the number of unknown variations and matching equations is reduced by half for pure TEn (TMn) modes, and the computation cost is decreased dramatically.展开更多
Optical waveguide is used to guide the transmission of light. This paper reviews multilayer optical waveguide and some devices based on it. The optical waveguide can be divided into single-layer and multilayer optical...Optical waveguide is used to guide the transmission of light. This paper reviews multilayer optical waveguide and some devices based on it. The optical waveguide can be divided into single-layer and multilayer optical waveguides in general. Here, multilayer cylindrical waveguide and multilayer planar waveguides were mainly focused. The analyzing method and the structures of waveguides were also demonstrated in briefly. Both these multilayer optical waveguide used in different kinds of optical devices including optical modulator, laser, optical amplifier, optical switch and special fiber were further presented. At last, the principle and structure of these multilayer optical devices were compared.展开更多
文摘With the help of the effective refractive index method we have numerically analyzed a multilayer planar waveguide structure and calculated the propagation constants, confinement factors, and transverse electric (TE) modes. A five-layer waveguide model has been provided to analyze the electro-magne tic wave propagation process. The analysis method has been applied to the 980 nm laser with active layer of GaInAs/GaInAsP strained quantum wells, GaInAsP confinement layers and GaInP cap layers. By changing the thickness of confinement layers, we obtained confinement factor as high as 95% with higher TE modes TE1 and TE2. The results are in good agreement with the experiment by A. Al-Muhanna et al. and give the new idea to enhance output power of semiconductor lasers. The analysis method can also be extended to any other slab multilayer waveguide structures, and the results are useful to the fabrication of optic-electronic devices.
基金Supported by the National Natural Science Foundation of China under grant No.698710121 and 699301030
文摘TEn mode (whose electric field is zero in the normal direction of the boundaries between layers) and TMn mode (whose magnetic field is zero in the normal direction of the boundaries between layers) are defined. Then conditions under which pure TEn (TMn) modes may exist in multilayer waveguide structure with discontinuities are presented. E (H) step wavguides, ridged wavguides, microstrip lines and fin lines all satisfy the conditions, and hold for TEn (TMn) mode. The conventional conclusion that ridged waveguides with inhomogeneous dielectric-slab loading, microstrip lines and fin lines only hold for hybrid modes is revised. Compared with hybrid modes, the number of unknown variations and matching equations is reduced by half for pure TEn (TMn) modes, and the computation cost is decreased dramatically.
基金This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 61275076, 61177069).
文摘Optical waveguide is used to guide the transmission of light. This paper reviews multilayer optical waveguide and some devices based on it. The optical waveguide can be divided into single-layer and multilayer optical waveguides in general. Here, multilayer cylindrical waveguide and multilayer planar waveguides were mainly focused. The analyzing method and the structures of waveguides were also demonstrated in briefly. Both these multilayer optical waveguide used in different kinds of optical devices including optical modulator, laser, optical amplifier, optical switch and special fiber were further presented. At last, the principle and structure of these multilayer optical devices were compared.