We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical express...We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles.Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference.High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range,and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms.This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement.展开更多
A scheme is proposed for preparing a quantum vortex state with a coupled waveguide, in which a single-mode odd cat state with weak intensity and a single-mode coherent state are inserted in the input ports, respective...A scheme is proposed for preparing a quantum vortex state with a coupled waveguide, in which a single-mode odd cat state with weak intensity and a single-mode coherent state are inserted in the input ports, respectively. The analytical wavefunction of the resulting state in the quadrature space is derived, and the vortex structure of the output state is analyzed. It is found that the obtained states, which may carry a vortex with topological charge index one, are entangled and nonclassical, depending only on the scaled propagation time and the weak intensity of the input odd cat state instead of the displacement parameter of the input coherent state. The phase distribution, however, in the quadrature space, depends on the displacement parameter of the input coherent state展开更多
We investigate the single-photon scattering properties of a driven three-level giant atom chirally coupled to two waveguides simultaneously in both the Markovian and the non-Markovian regimes.It is shown that under th...We investigate the single-photon scattering properties of a driven three-level giant atom chirally coupled to two waveguides simultaneously in both the Markovian and the non-Markovian regimes.It is shown that under the Markovian limit,the chiral photon-atom interactions enable nonreciprocal scattering in a single waveguide and targeted photon routing with a probability of 100%in two waveguides,while the presence of the driving field and the giant atom structure introduce a more tunable parameter to manipulate the single-photon scattering behaviors.We also examine how the non-reciprocity and routing capability are influenced by the imperfect chirality and the atomic dissipation.In the non-Markovian regime,we show that the scattering behaviors are more complicated.The non-Markovicity induced non-reciprocity and photon routing are demonstrated in this paper.We believe that those results have potential applications in quantum network engineering.展开更多
Bound states in the continuum(BICs)provide a fascinating platform to route/manipulate waves with ultralow loss by patterning low-refractive-index materials on a high-refractive-index substrate.Principally,the phase of...Bound states in the continuum(BICs)provide a fascinating platform to route/manipulate waves with ultralow loss by patterning low-refractive-index materials on a high-refractive-index substrate.Principally,the phase of leaking channels can be manipulated via tuning the structural parameters to achieve destructive interference(i.e.,the BIC condition),surprisingly leading to the total elimination of dissipation to the continuum of the substrate.Despite recent developments in BIC photonics,the BIC conditions can only be satisfied at specified geometric sizes for waveguides that dim their application prospects.Here,we propose a dual waveguide system that support BICs under arbitrary waveguide sizes by solely changing the intervals between the two waveguides.Our calculation results show that robust BICs in such architectures stem from the interaction(destructive interference)between leaking waves from the two waveguides.Furthermore,a cladding layer is introduced to improve the fabrication tolerance and reduce the sensitivity of the low-loss condition on the waveguide intervals of the presented dual waveguide system.The proposed approach offers an intriguing solution to establish a BIC concept and may be helpful to improve the potential of BIC photonic devices and circuits.展开更多
In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of...In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.展开更多
A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic...A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone.This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes.By adjusting the magnitude of the glide dislocation the edge bandgaps,the bandgap of the guided-modes at the boundary of the Brillouin zone,can be further adjusted.The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities,achieving single-mode guided-bands with relatively flat dispersion relationship.In addition,there exists acousto-optic interaction in the cavity constructed by the glide plane.The proposed waveguide has potential applications in the design of novel optomechanical devices.展开更多
The unique in-plane and out-of-plane anisotropy of α-MoO_(3) has attracted considerable interest with regard to potential optoelectronic applications. However, most research has focused on the mid-infrared spectrum, ...The unique in-plane and out-of-plane anisotropy of α-MoO_(3) has attracted considerable interest with regard to potential optoelectronic applications. However, most research has focused on the mid-infrared spectrum, leaving its properties and applications in the visible and near-infrared light spectrum less explored. This study advances the understanding of waveguiding properties of α-MoO_(3) by near-field imaging of the waveguide modes along the [100] and [001] directions of α-MoO_(3) flakes at 633 nm and 785 nm. We investigate the effects of flake thickness and documented the modes' dispersion relationships, which is crucial for tailoring the optical responses of α-MoO_(3) in device applications. Our findings enhance the field of research into α-MoO_(3), highlighting its utility in fabricating next-generation optoelectronic devices due to its unique optically anisotropic waveguide.展开更多
Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are invest...Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are investigated.The results show that the system composed of gain materials exhibits characteristics of ultra-strong transmission and bidirectional reflection.Conversely,the system composed of loss materials demonstrates equal transmittance and reflectance at some frequencies.In both the systems,a new type of total reflection phenomenon is observed.When the imaginary part of the refractive indices of waveguide segments is smaller than 10-5,the system shows bidirectional transparency with the transmittance tending to be 1 and reflectivity to be smaller than 10-8 at some bands.When the refractive indices of the waveguide segments are real,the system will be bidirectional transparent at the full band.These findings may deepen the understanding of anti-PT-symmetric optical systems and optical waveguide networks,and possess potential applications in efficient optical energy storage,ultra-sensitive optical filters,ultra-sensitive all-optical switches,integrated optical chips,stealth physics,and so on.展开更多
Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or...Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.展开更多
The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide...The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.展开更多
Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decis...Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decision for acoustical duct physical scale model. The used decision was found on minimization of acoustical field power transfer function from the beginning of waveguide to their end.展开更多
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
In the non-conventional media like underwater and underground,the Radio Frequency(RF)communication technique does not perform well due to large antenna size requirement and high path loss.In such media,magnetic induct...In the non-conventional media like underwater and underground,the Radio Frequency(RF)communication technique does not perform well due to large antenna size requirement and high path loss.In such media,magnetic induction(MI)communication technique is very promising due to small coil size and constant channel behavior.Unlike the RF technique,the communication range in MI technique is relatively less.To enhance this range,a waveguide technique is already brought in practice.This technique employs single layer coils to enhance the performance of MI waveguide.To further enhance the system functioning,in this paper,we investigated the performance of multi-layer coil(MLC)antenna based MI waveguide communication system in terms of transmission range,path loss,bit error rate(BER)and bandwidth.Besides,the system performance is quantitatively evaluated in three different non-conventional media viz.,dry soil,fresh water and wet soil.As compared with the single layer counterpart,the MLC system shows a significant improvement in transmission range,BER even in loosely coupled scenarios and shows a corresponding reduction in path loss.However,the bandwidth is observed to be low(<1 KHz).In this analysis,the eddy current effects and parasitic capacitance are compared for single and multilayer coils.It is observed that the proposed system performs better in dry soil medium due to less medium conductivity.展开更多
In this paper, we propose a novel approach to achieve spectrum prediction, parameter fitting, inverse design, and performance optimization for the plasmonic waveguide-coupled with cavities structure(PWCCS) based on ar...In this paper, we propose a novel approach to achieve spectrum prediction, parameter fitting, inverse design, and performance optimization for the plasmonic waveguide-coupled with cavities structure(PWCCS) based on artificial neural networks(ANNs). The Fano resonance and plasmon-induced transparency effect originated from the PWCCS have been selected as illustrations to verify the effectiveness of ANNs. We use the genetic algorithm to design the network architecture and select the hyperparameters for ANNs. Once ANNs are trained by using a small sampling of the data generated by the Monte Carlo method, the transmission spectra predicted by the ANNs are quite approximate to the simulated results. The physical mechanisms behind the phenomena are discussed theoretically, and the uncertain parameters in the theoretical models are fitted by utilizing the trained ANNs.More importantly, our results demonstrate that this model-driven method not only realizes the inverse design of the PWCCS with high precision but also optimizes some critical performance metrics for the transmission spectrum. Compared with previous works, we construct a novel model-driven analysis method for the PWCCS that is expected to have significant applications in the device design, performance optimization, variability analysis,defect detection, theoretical modeling, optical interconnects, and so on.展开更多
The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated. Expressions of dispersion characteristics, normalized phase velocity and interactio...The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated. Expressions of dispersion characteristics, normalized phase velocity and interaction impedance of this structure are derived and numerically calculated. The calculated results using our theory agree well with those obtained by using the 3D electromagnetic simulation software HFSS. Influences of the ridge-loaded area and broad-wall dimensions on the high frequency characteristics of the novel slow-wave structure are discussed. It is shown that the folded double-ridged waveguide structure has a much wider relative passband than the folded waveguide slow-wave structure and a relative passband of 67% could be obtained, indicating that this structure can operate in broad-band frequency ranges of beam-wave interaction. The small signal gain property is investigated for ensuring the improvement of bandwidth. Meanwhile, with comparable dispersion characteristics, the transverse section dimension of this novel structure is much smaller than that of conventional one, which indicates an available way to reduce the weight of traveling-wave tube.展开更多
In the industrial fields, many high temperature structures that require a non-destructive inspection exist. However, there are currently few sensors that can carry out non-destructive testing in a high temperature env...In the industrial fields, many high temperature structures that require a non-destructive inspection exist. However, there are currently few sensors that can carry out non-destructive testing in a high temperature environment. In particular, the ultrasonic sensor is normally not used at over 50 degrees Celsius. Also, a special sensor for high temperature is currently available, but there are various constraints;it has not yet reached a level that is useful in industry. Therefore, we have been developing a new sensor system using a long waveguide which can transmit an ultrasonic wave from a long distance. Especially, this study focuses on applying the developed technique to a pipe which is used in a nuclear power plant. Therefore, the best rectangular-shaped waveguide was studied and attempted to be wound around a pipe to be driven by an acoustic source of a guide wave. Finally, the L (0, 2) and T (0, 1)-mode guide waves were successfully detected by optimizing the shape of the opposite edge of the rectangular-shaped waveguide that could detect the reflected signal from an artificial defect machined into a test pipe.展开更多
We theoretically investigate the influences of two coherent driving fields on the asymmetric transmission of single photon in the atom-waveguide system.The atom is considered as a A system.One transition of the atom c...We theoretically investigate the influences of two coherent driving fields on the asymmetric transmission of single photon in the atom-waveguide system.The atom is considered as a A system.One transition of the atom chirally couples to the waveguide.The other transition is driven by two coherent driving fields.The transmission probabilities for the single photon incidents from the left(T_(lr)) and right(Tlr) are given respectively.The calculated results show that one can realize Tlr=0(Tlr≠0) or Tlr=0(Tlr≠0) by manipulating the phase difference between the two coherent driving Relds.The influence of the decay rate of the metastable state on the asymmetric transmission is also discussed.展开更多
We investigate theoretically the single-photon scattering by a A-type three-level system interacting with a whispering-gallery-type resonator which is coupled to a one-dimensional waveguide by full quantum-mechanical ...We investigate theoretically the single-photon scattering by a A-type three-level system interacting with a whispering-gallery-type resonator which is coupled to a one-dimensional waveguide by full quantum-mechanical approach. The single-photon transmission amplitude and reflection amplitude are obtained exactly via real-space approach. The single-photon transport properties controlling by classic optical field are discussed. The critical coupling condition in the coupled waveguide-whispering-gallery resonator-atom with three-level system is also analyzed.展开更多
We investigate theoretically single photon transport in one-dimensional waveguide coupled to a pair of cavities,which are denoted by the first cavity and the auxiliary cavity.Two cases with no atom and one atom embedd...We investigate theoretically single photon transport in one-dimensional waveguide coupled to a pair of cavities,which are denoted by the first cavity and the auxiliary cavity.Two cases with no atom and one atom embedded in the first cavity are discussed.The Fano dips in the transmission spectrum and locations of transparency window are calculated.When no atom is embedded in the first cavity,there exists a transparency window under the condition that the first cavity and the auxiliary cavity are not resonant.The locations of the transparency window and Fano line type depend strongly on the eigen frequency of the auxiliary cavity and the coupling strength between the auxiliary cavity and the waveguide.When one atom is embedded in the first cavity,we show that the transparency window exists even though the first cavity,the atom and the auxiliary cavity are resonant.The Fano line type is strongly dependent on the eigen frequency of the auxiliary cavity and the coupling strength.Our results have potential applications in design of quantum devices at the level of single photon,such as single photon switch and single photon routers.展开更多
We study the nonreciprocal properties of transmitted photons in a chiral waveguide quantum electrodynamics(QED)system,including single-and two-photon transmissions and second-order correlations.For the single-photon t...We study the nonreciprocal properties of transmitted photons in a chiral waveguide quantum electrodynamics(QED)system,including single-and two-photon transmissions and second-order correlations.For the single-photon transmission,the nonreciprocity is induced by the effects of chiral coupling and atomic dissipation in the weak coupling region.It vanishes in the strong coupling regime when the effect of atomic dissipation becomes ignorable.In the case of two-photon transmission,there exist two ways of going through the emitter:independently as plane waves and formation of bound state.Besides the nonreciprocal behavior of plane waves,the bound state that differs in two directions also alters transmission probabilities.In addition,the second-order correlation of transmitted photons depends on the interference between plane wave and bound state.The destructive interference leads to the strong antibunching in the weak coupling region,while the effective formation of bound state leads to the strong bunching in the intermediate coupling region.However,the negligible interactions for left-propagating photons hardly change the statistics of the input coherent state.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12365003,12364024,and 11864014)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20212BAB201014 and 20224BAB201023)。
文摘We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles.Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference.High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range,and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms.This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement.
文摘A scheme is proposed for preparing a quantum vortex state with a coupled waveguide, in which a single-mode odd cat state with weak intensity and a single-mode coherent state are inserted in the input ports, respectively. The analytical wavefunction of the resulting state in the quadrature space is derived, and the vortex structure of the output state is analyzed. It is found that the obtained states, which may carry a vortex with topological charge index one, are entangled and nonclassical, depending only on the scaled propagation time and the weak intensity of the input odd cat state instead of the displacement parameter of the input coherent state. The phase distribution, however, in the quadrature space, depends on the displacement parameter of the input coherent state
文摘We investigate the single-photon scattering properties of a driven three-level giant atom chirally coupled to two waveguides simultaneously in both the Markovian and the non-Markovian regimes.It is shown that under the Markovian limit,the chiral photon-atom interactions enable nonreciprocal scattering in a single waveguide and targeted photon routing with a probability of 100%in two waveguides,while the presence of the driving field and the giant atom structure introduce a more tunable parameter to manipulate the single-photon scattering behaviors.We also examine how the non-reciprocity and routing capability are influenced by the imperfect chirality and the atomic dissipation.In the non-Markovian regime,we show that the scattering behaviors are more complicated.The non-Markovicity induced non-reciprocity and photon routing are demonstrated in this paper.We believe that those results have potential applications in quantum network engineering.
基金National Natural Science Foundation of China(61905113)。
文摘Bound states in the continuum(BICs)provide a fascinating platform to route/manipulate waves with ultralow loss by patterning low-refractive-index materials on a high-refractive-index substrate.Principally,the phase of leaking channels can be manipulated via tuning the structural parameters to achieve destructive interference(i.e.,the BIC condition),surprisingly leading to the total elimination of dissipation to the continuum of the substrate.Despite recent developments in BIC photonics,the BIC conditions can only be satisfied at specified geometric sizes for waveguides that dim their application prospects.Here,we propose a dual waveguide system that support BICs under arbitrary waveguide sizes by solely changing the intervals between the two waveguides.Our calculation results show that robust BICs in such architectures stem from the interaction(destructive interference)between leaking waves from the two waveguides.Furthermore,a cladding layer is introduced to improve the fabrication tolerance and reduce the sensitivity of the low-loss condition on the waveguide intervals of the presented dual waveguide system.The proposed approach offers an intriguing solution to establish a BIC concept and may be helpful to improve the potential of BIC photonic devices and circuits.
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,61974152,62104237,62004205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202057)+1 种基金Shanghai Science and Technology Committee Rising-Star Program(20QA1410500)Shanghai Sail Plans(21YF1455000)。
文摘In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.
基金Project supported by the National Natural Science Foundation of China(Grant No.12064025)the Natural Science Foundation of Jiangxi Province,China(Grant No.20212ACB202006)+1 种基金the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province,China(Grant No.20204BCJ22012)the Open Project of the Key Laboratory of Radar Imaging and Microwave Photonic Technology of the Education Ministry of China.
文摘A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone.This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes.By adjusting the magnitude of the glide dislocation the edge bandgaps,the bandgap of the guided-modes at the boundary of the Brillouin zone,can be further adjusted.The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities,achieving single-mode guided-bands with relatively flat dispersion relationship.In addition,there exists acousto-optic interaction in the cavity constructed by the glide plane.The proposed waveguide has potential applications in the design of novel optomechanical devices.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1203500)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the CAS Youth Interdisciplinary Team。
文摘The unique in-plane and out-of-plane anisotropy of α-MoO_(3) has attracted considerable interest with regard to potential optoelectronic applications. However, most research has focused on the mid-infrared spectrum, leaving its properties and applications in the visible and near-infrared light spectrum less explored. This study advances the understanding of waveguiding properties of α-MoO_(3) by near-field imaging of the waveguide modes along the [100] and [001] directions of α-MoO_(3) flakes at 633 nm and 785 nm. We investigate the effects of flake thickness and documented the modes' dispersion relationships, which is crucial for tailoring the optical responses of α-MoO_(3) in device applications. Our findings enhance the field of research into α-MoO_(3), highlighting its utility in fabricating next-generation optoelectronic devices due to its unique optically anisotropic waveguide.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674107,61475049,11775083,61774062,and 61771205).
文摘Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are investigated.The results show that the system composed of gain materials exhibits characteristics of ultra-strong transmission and bidirectional reflection.Conversely,the system composed of loss materials demonstrates equal transmittance and reflectance at some frequencies.In both the systems,a new type of total reflection phenomenon is observed.When the imaginary part of the refractive indices of waveguide segments is smaller than 10-5,the system shows bidirectional transparency with the transmittance tending to be 1 and reflectivity to be smaller than 10-8 at some bands.When the refractive indices of the waveguide segments are real,the system will be bidirectional transparent at the full band.These findings may deepen the understanding of anti-PT-symmetric optical systems and optical waveguide networks,and possess potential applications in efficient optical energy storage,ultra-sensitive optical filters,ultra-sensitive all-optical switches,integrated optical chips,stealth physics,and so on.
基金supported by the ZTE Industry-University-Institute Fund Project under Grant No.IA20221202011。
文摘Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.
文摘The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.
文摘Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decision for acoustical duct physical scale model. The used decision was found on minimization of acoustical field power transfer function from the beginning of waveguide to their end.
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.
文摘In the non-conventional media like underwater and underground,the Radio Frequency(RF)communication technique does not perform well due to large antenna size requirement and high path loss.In such media,magnetic induction(MI)communication technique is very promising due to small coil size and constant channel behavior.Unlike the RF technique,the communication range in MI technique is relatively less.To enhance this range,a waveguide technique is already brought in practice.This technique employs single layer coils to enhance the performance of MI waveguide.To further enhance the system functioning,in this paper,we investigated the performance of multi-layer coil(MLC)antenna based MI waveguide communication system in terms of transmission range,path loss,bit error rate(BER)and bandwidth.Besides,the system performance is quantitatively evaluated in three different non-conventional media viz.,dry soil,fresh water and wet soil.As compared with the single layer counterpart,the MLC system shows a significant improvement in transmission range,BER even in loosely coupled scenarios and shows a corresponding reduction in path loss.However,the bandwidth is observed to be low(<1 KHz).In this analysis,the eddy current effects and parasitic capacitance are compared for single and multilayer coils.It is observed that the proposed system performs better in dry soil medium due to less medium conductivity.
基金National Natural Science Foundation of China(NSFC)(61705015,61431003,61625104)China Postdoctoral Science Foundation(2017M610826,2018T110074)+2 种基金National Key Research and Development Program(2016YFA0301300)Beijing Municipal Science and Technology Commission(Z181100008918011)Fundamental Research Funds for the Central Universities(2018XKJC02)
文摘In this paper, we propose a novel approach to achieve spectrum prediction, parameter fitting, inverse design, and performance optimization for the plasmonic waveguide-coupled with cavities structure(PWCCS) based on artificial neural networks(ANNs). The Fano resonance and plasmon-induced transparency effect originated from the PWCCS have been selected as illustrations to verify the effectiveness of ANNs. We use the genetic algorithm to design the network architecture and select the hyperparameters for ANNs. Once ANNs are trained by using a small sampling of the data generated by the Monte Carlo method, the transmission spectra predicted by the ANNs are quite approximate to the simulated results. The physical mechanisms behind the phenomena are discussed theoretically, and the uncertain parameters in the theoretical models are fitted by utilizing the trained ANNs.More importantly, our results demonstrate that this model-driven method not only realizes the inverse design of the PWCCS with high precision but also optimizes some critical performance metrics for the transmission spectrum. Compared with previous works, we construct a novel model-driven analysis method for the PWCCS that is expected to have significant applications in the device design, performance optimization, variability analysis,defect detection, theoretical modeling, optical interconnects, and so on.
基金Project supported in part by the National Natural Science Foundation of China (Grant No. 60971038)in part by the Fundamental Research Funds for Central Universities,China (Grant No. ZYGX2009Z003)
文摘The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated. Expressions of dispersion characteristics, normalized phase velocity and interaction impedance of this structure are derived and numerically calculated. The calculated results using our theory agree well with those obtained by using the 3D electromagnetic simulation software HFSS. Influences of the ridge-loaded area and broad-wall dimensions on the high frequency characteristics of the novel slow-wave structure are discussed. It is shown that the folded double-ridged waveguide structure has a much wider relative passband than the folded waveguide slow-wave structure and a relative passband of 67% could be obtained, indicating that this structure can operate in broad-band frequency ranges of beam-wave interaction. The small signal gain property is investigated for ensuring the improvement of bandwidth. Meanwhile, with comparable dispersion characteristics, the transverse section dimension of this novel structure is much smaller than that of conventional one, which indicates an available way to reduce the weight of traveling-wave tube.
文摘In the industrial fields, many high temperature structures that require a non-destructive inspection exist. However, there are currently few sensors that can carry out non-destructive testing in a high temperature environment. In particular, the ultrasonic sensor is normally not used at over 50 degrees Celsius. Also, a special sensor for high temperature is currently available, but there are various constraints;it has not yet reached a level that is useful in industry. Therefore, we have been developing a new sensor system using a long waveguide which can transmit an ultrasonic wave from a long distance. Especially, this study focuses on applying the developed technique to a pipe which is used in a nuclear power plant. Therefore, the best rectangular-shaped waveguide was studied and attempted to be wound around a pipe to be driven by an acoustic source of a guide wave. Finally, the L (0, 2) and T (0, 1)-mode guide waves were successfully detected by optimizing the shape of the opposite edge of the rectangular-shaped waveguide that could detect the reflected signal from an artificial defect machined into a test pipe.
基金Supported by Anhui Provincial Natural Science Foundation under Grant No.1608085MA09National Natural Science Foundation of China under Grant Nos.11774262 and 11975023
文摘We theoretically investigate the influences of two coherent driving fields on the asymmetric transmission of single photon in the atom-waveguide system.The atom is considered as a A system.One transition of the atom chirally couples to the waveguide.The other transition is driven by two coherent driving fields.The transmission probabilities for the single photon incidents from the left(T_(lr)) and right(Tlr) are given respectively.The calculated results show that one can realize Tlr=0(Tlr≠0) or Tlr=0(Tlr≠0) by manipulating the phase difference between the two coherent driving Relds.The influence of the decay rate of the metastable state on the asymmetric transmission is also discussed.
基金*Supported by National Natural Science Foundation of China under Grant Nos. 10874134, 11004001, and 10947115 and Anhui Province for Young Teachers Foundation under Crant No. 2010SQRL037ZD
文摘We investigate theoretically the single-photon scattering by a A-type three-level system interacting with a whispering-gallery-type resonator which is coupled to a one-dimensional waveguide by full quantum-mechanical approach. The single-photon transmission amplitude and reflection amplitude are obtained exactly via real-space approach. The single-photon transport properties controlling by classic optical field are discussed. The critical coupling condition in the coupled waveguide-whispering-gallery resonator-atom with three-level system is also analyzed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11774262 and 11975023)。
文摘We investigate theoretically single photon transport in one-dimensional waveguide coupled to a pair of cavities,which are denoted by the first cavity and the auxiliary cavity.Two cases with no atom and one atom embedded in the first cavity are discussed.The Fano dips in the transmission spectrum and locations of transparency window are calculated.When no atom is embedded in the first cavity,there exists a transparency window under the condition that the first cavity and the auxiliary cavity are not resonant.The locations of the transparency window and Fano line type depend strongly on the eigen frequency of the auxiliary cavity and the coupling strength between the auxiliary cavity and the waveguide.When one atom is embedded in the first cavity,we show that the transparency window exists even though the first cavity,the atom and the auxiliary cavity are resonant.The Fano line type is strongly dependent on the eigen frequency of the auxiliary cavity and the coupling strength.Our results have potential applications in design of quantum devices at the level of single photon,such as single photon switch and single photon routers.
基金supported by the National Natural Science Foundation of China(Grant No.11704045)。
文摘We study the nonreciprocal properties of transmitted photons in a chiral waveguide quantum electrodynamics(QED)system,including single-and two-photon transmissions and second-order correlations.For the single-photon transmission,the nonreciprocity is induced by the effects of chiral coupling and atomic dissipation in the weak coupling region.It vanishes in the strong coupling regime when the effect of atomic dissipation becomes ignorable.In the case of two-photon transmission,there exist two ways of going through the emitter:independently as plane waves and formation of bound state.Besides the nonreciprocal behavior of plane waves,the bound state that differs in two directions also alters transmission probabilities.In addition,the second-order correlation of transmitted photons depends on the interference between plane wave and bound state.The destructive interference leads to the strong antibunching in the weak coupling region,while the effective formation of bound state leads to the strong bunching in the intermediate coupling region.However,the negligible interactions for left-propagating photons hardly change the statistics of the input coherent state.