Objective To explore the transitive regularity of holistic constituents from the crude slices of the medicinal raw materials(MCS)to the formula granules(FG),fufang decoction(FD),and finally,the concentrated pills(CP)o...Objective To explore the transitive regularity of holistic constituents from the crude slices of the medicinal raw materials(MCS)to the formula granules(FG),fufang decoction(FD),and finally,the concentrated pills(CP)of Liuwei Dihuang Fufang(六味地黄复方,LWDHF).Methods Samples for MCS,FG,FD,and CP of LWDHF were obtained,and a fingerprint data-base was established using high-performance liquid chromatography(HPLC),by separating the samples in an XB-C18 column and analyzing the transitive regularity of components us-ing the total quantum statistical moment(TQSM),including total quantum zero moment(AUCT),total quantum first moment(MRTT),total quantum second moment(VRTT),and its similarity approach.The AUCT,MRTT,and VRTT were calculated based on the representative HPLC chromatograms of FG,FD,and CP of LWDHF.Results AUCT of FG,FD,and CP of LWDHF was 71804,46553,and 144646μV·s,respectively;MRTT was 14.43,14.54,and 18.85 min,respectively;and VRTT was 106.98,112.84,and 269.12 min2,respectively.Comparing the similarity of FG/FD,FG/CP and FD/CP of LWDHF,the TQSM similarity values were 98.66%,76.62%,and 75.37%,respectively,whereas the tradi-tional similarity evaluation values were 98.68%,85.43%,and 85.60%,respectively.Conclusion The results perform little distinction in the total composition between FG and FD,whereas some distinction existed between FD and CP.Experimental evidence,therefore indicates that FG could be used as the alternative of MCS in clinical applications.展开更多
In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we si...In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we simulate the multiple-equilibria regimes of double-gyre circulation under different viscosity coefficient and obtain the bifurcation diagram, then choose two equilibrium states (called jet-up state and jet-down state) as reference states respectively, propose Principal Component Analysis-based Simulated Annealing (PCASA) algorithm to solve CNOP-type initial perturbations which can induce double-gyre regime transitions between jet-up state and jet-down state. PCASA algorithm is an adjoint-free method which searches optimal solution randomly in the whole solution space. In addition, we investigate CNOP-type initial perturbations how to evolve with time. The results show:(1) the CNOP-type perturbations present a two-cell structure, and gradually evolves into a three-cell structure at predictive time;(2) by superimposing CNOP-type perturbations on the jet-up state and integrating ROMS, double-gyre circulation transfers from jet-up state to jet-down state, and vice versa, and random initial perturbations don't cause the transitions, which means CNOP-type perturbations are the optimal precursors of double-gyre regime transitions;(3) by analyzing the transition process of double-gyre regime transitions, we find that CNOP-type initial perturbations obtain energy from the background state through both barotropic and baroclinic instabilities, and barotropic instability contributes more significantly to the fast-growth of the perturbations. The optimal precursors and the dynamic mechanism of double-gyre regime transitions revealed in this paper have an important significance to enhance the predictability of double-gyre circulation.展开更多
Pure W and W-Cu-W trilayer coatings were deposited on an Fe substrate by d.c. magnetron sputtering. The α-β phase evolution, intragranular stress evolution in sputter-deposited W layer were investigated by x-ray dif...Pure W and W-Cu-W trilayer coatings were deposited on an Fe substrate by d.c. magnetron sputtering. The α-β phase evolution, intragranular stress evolution in sputter-deposited W layer were investigated by x-ray diffraction. They are directly related to the film microstructure, density and adhesion. Therefore, control of the film stress and phase component transition is essential for its applications. The phase component transition from β-W to α-W and intragranular stress evolution from tensile to compressive strongly depend on the deposition parameters and can be induced by lowering Ar pressure and rising target power. The compressively stressed films with α-W phase have a dense microstructure and high adhesion to Fe substrate.展开更多
The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by...The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element(FE) simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increasing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology(RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the process forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.展开更多
In this research three new innovative concepts are introduced and developed: the first defined as Transit System Maturity Components (TSMC), the second referred to as Transit System Maturity Scale (TSMS) and the third...In this research three new innovative concepts are introduced and developed: the first defined as Transit System Maturity Components (TSMC), the second referred to as Transit System Maturity Scale (TSMS) and the third labeled as Transit System Maturity Index (TSMI). The TSMC is meant to conceptualise the main strategic generic components characterising the maturity of transit systems. The TSMS is an S shaped scaling system for measuring maturity of transit system components. The TSMI presents an innovative index meant to assess the overall level of maturity of a city transit system. Such framework is envisaged to be used to determine and compare the overall maturity levels of transit systems in cities of the world as well as to act as a basis to identify strengths & gaps that need to be addressed/completed. Furthermore, it can also act as an ingredient in shaping and developing future road maps for transit system in cities across the world. The research concludes by demonstrating the applicability of TSMC, TSMS, and TSMI in conducting an initial assessment of the Transit System Maturity for the fast growing city of Dubai.展开更多
Through the integration and analysis platform of particulate matter components,a preliminary comparison was conducted on the pollution contribution of the three winter transit air masses in December to environmental q...Through the integration and analysis platform of particulate matter components,a preliminary comparison was conducted on the pollution contribution of the three winter transit air masses in December to environmental quality,and the changes and related relationships of water-soluble ions and particulate matter elements were analyzed.The results showed that winter transit air masses had a significant impact on the air quality in Hengyang.In the quantitative comparison of the primary pollutant contribution during the transit period of air masses,local sources and transit sources each accounted for half,and the impact of transit source on ambient air quality was much greater than that of seasonal base increase.Fine particulate matter was closely related to secondary ions,and particulate matter was closely related to primary ions.The transit of air masses promoted the improvement of secondary ion conversion rate,and the unit increment of fine particulate matter was greater than that of particulate matter.During the transit period,the mass concentrations of most water-soluble ions and most particulate matter elements maintained synchronous growth,with a superimposed effect.The composition ratio of organic carbon and nitrate ions increased,while the composition ratio of ammonia and sulfate ions decreased.Both disposable ions and secondary conversions in the composition of PM_(2.5)had increases and decreases.The high conversion rate of nitrate and the high composition ratio of ammonia radical in Hengyang indicated that transportation source factors had a significant impact on the local environmental quality of Hengyang.展开更多
We investigate domain wall excitations in a two-component Bose–Einstein condensate with two-body interactions and pair-transition effects. It is shown that domain wall excitations can be described exactly by kink and...We investigate domain wall excitations in a two-component Bose–Einstein condensate with two-body interactions and pair-transition effects. It is shown that domain wall excitations can be described exactly by kink and anti-kink excitations in each component. The domain wall solutions are given analytically, which exist with different conditions compared with the domain wall reported before. Bubble-droplet structure can be also obtained from the fundamental domain wall, and their interactions are investigated analytically. Especially, domain wall interactions demonstrate some striking particle transition dynamics. These striking transition effects make the domain wall admit quite different collision behavior, in contrast to the collision between solitons or other nonlinear waves. The collisions between kinks induce some phase shift, which makes the domain wall change greatly. Their collisions can be elastic or inelastic with proper combination of fundamental domain walls. These characters can be used to manipulate one domain wall by interacting with other ones.展开更多
Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the tran...Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transi- tional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.展开更多
针对轨道交通工程的建筑信息模型(building information modeling,BIM)建模方法不统一、信息不规范,导致BIM模型数据难以在后期有效统一应用的弊端,研究基于工业基础类(industry foundation classes,IFC)标准的轨道交通BIM构件标准库。...针对轨道交通工程的建筑信息模型(building information modeling,BIM)建模方法不统一、信息不规范,导致BIM模型数据难以在后期有效统一应用的弊端,研究基于工业基础类(industry foundation classes,IFC)标准的轨道交通BIM构件标准库。首先,根据轨道交通工程各专业构件的表达需求,研究构件类型、构件信息的IFC表达,以及适配IFC标准的扩展机制;其次,提出轨道交通BIM构件标准库技术框架,主要包括基础数据层、技术支撑层、应用场景层、用户层;然后,采用国家标准的分类编码方法定义轨道交通各专业BIM构件的分类编码,设计了构件信息模板,规范各专业构件的属性信息及其资源链接方式;最后,研究BIM构件模型的加解密方法,以保障轨道交通工程BIM模型数据的安全性。研究结果表明,通过搭建统一的BIM构件标准库,能够促进参建方采用标准化的BIM构件模型创建轨道交通BIM项目模型,保障BIM模型的规范性。展开更多
By using the phase field model for the solidification of multi-component alloys and coupling with real thermodynamic data, the dendritic morphology transition and the dendritic micro-segregation of Ni-Al-Nb ternary al...By using the phase field model for the solidification of multi-component alloys and coupling with real thermodynamic data, the dendritic morphology transition and the dendritic micro-segregation of Ni-Al-Nb ternary alloys are simulated in two cases, i.e., varying the alloy composition at a fixed under-cooling and varying the undercooling at a fixed alloy composition. The simulated results indicate that with the increase of the dimensionless undercooling U (U=ΔT/ΔT0, where ΔT is the undercooling and ΔT0 the temperature interval between the solidus and liquidus), the dendritic morphology transfers from dendritic to globular growth in both cases. As to the dendritic micro-segregation, both cases present a regularity of increasing at first and then decreasing.展开更多
基金Hunan Provincial Natural Science Foundation of China(2019JJ40220 and 2021JJ30514)Hunan Provincial Administration of Traditional Chinese Medicine(2021204and 2021073)+1 种基金Scientific Research Fund of Hunan Provincial Education Department(2021204 and 2021073)Pharmaceutical Open Fund of Domestic First-class Disciplines(Cultivation)of Hunan Province(2018YX11)。
文摘Objective To explore the transitive regularity of holistic constituents from the crude slices of the medicinal raw materials(MCS)to the formula granules(FG),fufang decoction(FD),and finally,the concentrated pills(CP)of Liuwei Dihuang Fufang(六味地黄复方,LWDHF).Methods Samples for MCS,FG,FD,and CP of LWDHF were obtained,and a fingerprint data-base was established using high-performance liquid chromatography(HPLC),by separating the samples in an XB-C18 column and analyzing the transitive regularity of components us-ing the total quantum statistical moment(TQSM),including total quantum zero moment(AUCT),total quantum first moment(MRTT),total quantum second moment(VRTT),and its similarity approach.The AUCT,MRTT,and VRTT were calculated based on the representative HPLC chromatograms of FG,FD,and CP of LWDHF.Results AUCT of FG,FD,and CP of LWDHF was 71804,46553,and 144646μV·s,respectively;MRTT was 14.43,14.54,and 18.85 min,respectively;and VRTT was 106.98,112.84,and 269.12 min2,respectively.Comparing the similarity of FG/FD,FG/CP and FD/CP of LWDHF,the TQSM similarity values were 98.66%,76.62%,and 75.37%,respectively,whereas the tradi-tional similarity evaluation values were 98.68%,85.43%,and 85.60%,respectively.Conclusion The results perform little distinction in the total composition between FG and FD,whereas some distinction existed between FD and CP.Experimental evidence,therefore indicates that FG could be used as the alternative of MCS in clinical applications.
基金Supported by the National Natural Science Foundation of China(No.41405097)the Fundamental Research Funds for the Central Universities of China in 2017
文摘In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we simulate the multiple-equilibria regimes of double-gyre circulation under different viscosity coefficient and obtain the bifurcation diagram, then choose two equilibrium states (called jet-up state and jet-down state) as reference states respectively, propose Principal Component Analysis-based Simulated Annealing (PCASA) algorithm to solve CNOP-type initial perturbations which can induce double-gyre regime transitions between jet-up state and jet-down state. PCASA algorithm is an adjoint-free method which searches optimal solution randomly in the whole solution space. In addition, we investigate CNOP-type initial perturbations how to evolve with time. The results show:(1) the CNOP-type perturbations present a two-cell structure, and gradually evolves into a three-cell structure at predictive time;(2) by superimposing CNOP-type perturbations on the jet-up state and integrating ROMS, double-gyre circulation transfers from jet-up state to jet-down state, and vice versa, and random initial perturbations don't cause the transitions, which means CNOP-type perturbations are the optimal precursors of double-gyre regime transitions;(3) by analyzing the transition process of double-gyre regime transitions, we find that CNOP-type initial perturbations obtain energy from the background state through both barotropic and baroclinic instabilities, and barotropic instability contributes more significantly to the fast-growth of the perturbations. The optimal precursors and the dynamic mechanism of double-gyre regime transitions revealed in this paper have an important significance to enhance the predictability of double-gyre circulation.
文摘Pure W and W-Cu-W trilayer coatings were deposited on an Fe substrate by d.c. magnetron sputtering. The α-β phase evolution, intragranular stress evolution in sputter-deposited W layer were investigated by x-ray diffraction. They are directly related to the film microstructure, density and adhesion. Therefore, control of the film stress and phase component transition is essential for its applications. The phase component transition from β-W to α-W and intragranular stress evolution from tensile to compressive strongly depend on the deposition parameters and can be induced by lowering Ar pressure and rising target power. The compressively stressed films with α-W phase have a dense microstructure and high adhesion to Fe substrate.
基金the support of the National Natural Science Foundation of China(Nos.51605388,51675433)111 Project(B08040)+2 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)in China(Grant No.131-QP-2015)the Fundamental Research Funds for the Central Universitiesthe Open Research Fund of State Key Laboratory of Materials Processing and Die&Mold Technology at Huazhong University of Science and Technology
文摘The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element(FE) simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increasing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology(RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the process forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.
文摘In this research three new innovative concepts are introduced and developed: the first defined as Transit System Maturity Components (TSMC), the second referred to as Transit System Maturity Scale (TSMS) and the third labeled as Transit System Maturity Index (TSMI). The TSMC is meant to conceptualise the main strategic generic components characterising the maturity of transit systems. The TSMS is an S shaped scaling system for measuring maturity of transit system components. The TSMI presents an innovative index meant to assess the overall level of maturity of a city transit system. Such framework is envisaged to be used to determine and compare the overall maturity levels of transit systems in cities of the world as well as to act as a basis to identify strengths & gaps that need to be addressed/completed. Furthermore, it can also act as an ingredient in shaping and developing future road maps for transit system in cities across the world. The research concludes by demonstrating the applicability of TSMC, TSMS, and TSMI in conducting an initial assessment of the Transit System Maturity for the fast growing city of Dubai.
文摘Through the integration and analysis platform of particulate matter components,a preliminary comparison was conducted on the pollution contribution of the three winter transit air masses in December to environmental quality,and the changes and related relationships of water-soluble ions and particulate matter elements were analyzed.The results showed that winter transit air masses had a significant impact on the air quality in Hengyang.In the quantitative comparison of the primary pollutant contribution during the transit period of air masses,local sources and transit sources each accounted for half,and the impact of transit source on ambient air quality was much greater than that of seasonal base increase.Fine particulate matter was closely related to secondary ions,and particulate matter was closely related to primary ions.The transit of air masses promoted the improvement of secondary ion conversion rate,and the unit increment of fine particulate matter was greater than that of particulate matter.During the transit period,the mass concentrations of most water-soluble ions and most particulate matter elements maintained synchronous growth,with a superimposed effect.The composition ratio of organic carbon and nitrate ions increased,while the composition ratio of ammonia and sulfate ions decreased.Both disposable ions and secondary conversions in the composition of PM_(2.5)had increases and decreases.The high conversion rate of nitrate and the high composition ratio of ammonia radical in Hengyang indicated that transportation source factors had a significant impact on the local environmental quality of Hengyang.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775176)the Major Basic Research Program of the Natural Science Foundation of Shaanxi Province,China(Grant No.2018KJXX-094)the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province,China(Grant No.2017KCT-12)
文摘We investigate domain wall excitations in a two-component Bose–Einstein condensate with two-body interactions and pair-transition effects. It is shown that domain wall excitations can be described exactly by kink and anti-kink excitations in each component. The domain wall solutions are given analytically, which exist with different conditions compared with the domain wall reported before. Bubble-droplet structure can be also obtained from the fundamental domain wall, and their interactions are investigated analytically. Especially, domain wall interactions demonstrate some striking particle transition dynamics. These striking transition effects make the domain wall admit quite different collision behavior, in contrast to the collision between solitons or other nonlinear waves. The collisions between kinks induce some phase shift, which makes the domain wall change greatly. Their collisions can be elastic or inelastic with proper combination of fundamental domain walls. These characters can be used to manipulate one domain wall by interacting with other ones.
基金Acknowledgements The authors would like to gratefully acknowledge the support given by the National Natural Science Foundation of China (Grant No. 51575449), Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 104-QP-2014), 111 Project (Grant No. B08040), and Fundamental Research Funds for the Central Universities (Grant No. 3102015AX004).
文摘Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transi- tional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.
文摘针对轨道交通工程的建筑信息模型(building information modeling,BIM)建模方法不统一、信息不规范,导致BIM模型数据难以在后期有效统一应用的弊端,研究基于工业基础类(industry foundation classes,IFC)标准的轨道交通BIM构件标准库。首先,根据轨道交通工程各专业构件的表达需求,研究构件类型、构件信息的IFC表达,以及适配IFC标准的扩展机制;其次,提出轨道交通BIM构件标准库技术框架,主要包括基础数据层、技术支撑层、应用场景层、用户层;然后,采用国家标准的分类编码方法定义轨道交通各专业BIM构件的分类编码,设计了构件信息模板,规范各专业构件的属性信息及其资源链接方式;最后,研究BIM构件模型的加解密方法,以保障轨道交通工程BIM模型数据的安全性。研究结果表明,通过搭建统一的BIM构件标准库,能够促进参建方采用标准化的BIM构件模型创建轨道交通BIM项目模型,保障BIM模型的规范性。
基金Supported by the National Natural Science Foundation of China (Grant No.50401013)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of the People's Republic of China
文摘By using the phase field model for the solidification of multi-component alloys and coupling with real thermodynamic data, the dendritic morphology transition and the dendritic micro-segregation of Ni-Al-Nb ternary alloys are simulated in two cases, i.e., varying the alloy composition at a fixed under-cooling and varying the undercooling at a fixed alloy composition. The simulated results indicate that with the increase of the dimensionless undercooling U (U=ΔT/ΔT0, where ΔT is the undercooling and ΔT0 the temperature interval between the solidus and liquidus), the dendritic morphology transfers from dendritic to globular growth in both cases. As to the dendritic micro-segregation, both cases present a regularity of increasing at first and then decreasing.