As the power available in the initial phase of the ITER operation will be limited, accessing the high confinement mode (H-mode) with low heating power will be a critical issue. In the recent experiment on EAST, the ...As the power available in the initial phase of the ITER operation will be limited, accessing the high confinement mode (H-mode) with low heating power will be a critical issue. In the recent experiment on EAST, the H-mode was obtained for the first time with lower hybrid current drive (LHCD) wave only. Reciprocating Langmuir probe measurements at the outer midplane showed that the electron density ne and electron tempel:ature Te in the scrape-off layer (SOL) were significantly reduced in the ELM-free phase, resulting in the increase of lower-hybrid wave (LHW) reflection. It was found that the power loss Ploss was comparable during the L-H transition, by comparing the adjacent L-mode and H-mode discharge. The Da emission, Te and ne decreased rapidly in the time scale of about 1 ms, and the radial electric field Er turned positive in this process near the last closed flux surface. Multiple L-H-L transitions were observed during a single shot when the applied LHW power was marginal to the threshold. The floating potential (Vf) had negative spikes corresponding with the Da signal, and Er oscillation evolved into several intermittent negative spikes just before the L-H transition. In some shots, dithering was observed just before the L-H transition.展开更多
Recently,magnetism in two-dimensional(2 D)van der Waals(vd W)materials has attracted wide interests.It is anticipated that these materials will stimulate discovery of new physical phenomena and novel applications.The ...Recently,magnetism in two-dimensional(2 D)van der Waals(vd W)materials has attracted wide interests.It is anticipated that these materials will stimulate discovery of new physical phenomena and novel applications.The capability to quantitatively measure the magnetism of 2 D magnetic vd W materials is essential to understand these materials.Here we report on quantitative measurements of ferromagnetic-to-paramagnetic phase transition of an atomically thin(down to 11 nm)vd W magnet,namely Cr Br_(3),with a Curie point of 37.5 K.This experiment demonstrates that surface magnetism can be quantitatively investigated,which is useful for a wide variety of potential applications.展开更多
Background: The hepatic hemodynamics is an essential parameter in surgical planning as well as in various disease processes. The transit time ultrasound(TTUS) perivascular flow probe technology is widely used in clini...Background: The hepatic hemodynamics is an essential parameter in surgical planning as well as in various disease processes. The transit time ultrasound(TTUS) perivascular flow probe technology is widely used in clinical practice to evaluate the hepatic inflow, yet invasive. The phase-contrast-MRI(PC-MRI) is not invasive and potentially applicable in assessing the hepatic blood flow. In the present study, we compared the hepatic inflow rates using the PC-MRI and the TTUS probe, and evaluated their predictive value of post-hepatectomy adverse events. Methods: Eighteen large white pigs were anaesthetized for PC-MRI and approximately 75% hepatic resection was performed under a unified protocol. The blood flow was measured in the hepatic artery(Qha), the portal vein(Qpv), and the aorta above the celiac trunk(Qca) using PC-MRI, and was compared to the TTUS probe. The Bland-Altman method was conducted and a partial least squares regression(PLS) model was implemented. Results: The mean Qpv measured in PC-MRI was 0.55 ± 0.12 L/min, and in the TTUS probe was 0.74 ± 0.17 L/min. Qca was 1.40 ± 0.47 L/min in the PC-MRI and 2.00 ± 0.60 L/min in the TTUS probe. Qha was 0.17 ± 0.10 L/min in the PC-MRI, and 0.13 ± 0.06 L/min in the TTUS probe. The Bland-Altman method revealed that the estimated bias of Qca in the PC-MRI was 32%(95% CI:-49% to 15%); Qha 17%(95% CI:-15% to 51%); and Qpv 40%(95% CI:-62% to 18%). The TTUS probe had a higher weight in predicting adverse outcomes after 75% resection compared to the PC-MRI( β= 0.35 and 0.43 vs β = 0.22 and 0.07, for tissue changes and premature death, respectively). Conclusions: There is a tendency of the PC-MRI to underestimate the flow measured by the TTUS probes. The TTUS probe measures are more predictive of relevant post-hepatectomy outcomes.展开更多
A Langmuir probe and an ICCD are employed to study the discharge mode transition in Ar inductively coupled plasma. Electron density and plasma emission intensity are measured during the E (capacitive discharge) to H...A Langmuir probe and an ICCD are employed to study the discharge mode transition in Ar inductively coupled plasma. Electron density and plasma emission intensity are measured during the E (capacitive discharge) to H (inductive discharge) mode transitions at different pressures. It is found that plasma exists with a low electron density and a weak emission intensity in the E mode, while it has a high electron density and a strong emission intensity in the H mode. Meanwhile, the plasma emission intensity spatial (2D an asymmetric profile in the E mode. Moreover, the at high pressure, but increase almost continuously at image) profile is symmetrical in the H mode, but the 2D image is electron density and emission intensity jump up discontinuously the E to H mode transition under low pressure.展开更多
In this paper,E-H mode transition in magnetic-pole-enhanced inductively coupled neon-argon mixture plasma is investigated in terms of fundamental plasma parameters as a function of argon fraction(0%-100%),operating pr...In this paper,E-H mode transition in magnetic-pole-enhanced inductively coupled neon-argon mixture plasma is investigated in terms of fundamental plasma parameters as a function of argon fraction(0%-100%),operating pressure(1 Pa,5 Pa,10 Pa and 50 Pa),and radio frequency(RF)power(5-100 W).An RF compensated Langmuir probe and optical emission spectroscopy are used for the diagnostics of the plasma under study.Owing to the lower ionization potential and higher collision cross-section of argon,when its fraction in the discharge is increased,the mode transition occurs at lower RF power;i.e.for 0%argon and1 Pa pressure,the threshold power of the E-H mode transition is 65 W,which reduces to 20 W when the argon fraction is increased.The electron density increases with the argon fraction at afixed pressure,whereas the temperature decreases with the argon fraction.The relaxation length of the low-energy electrons increases,and decreases for high-energy electrons with argon fraction,due to the Ramseur effect.However,the relaxation length of both groups of electrons decreases with pressure due to reduction in the mean free path.The electron energy probability function(EEPF)profiles are non-Maxwellian in E-mode,attributable to the nonlocal electron kinetics in this mode;however,they evolve to Maxwellian distribution when the discharge transforms to H-mode due to lower electron temperature and higher electron density in H-mode.The tail of the measured EEPFs is found to deplete in both E-and H-modes when the argon fraction in the discharge is increased,because argon has a much lower excitation potential(11.5 eV)than neon(16.6 eV).展开更多
To construct pulsed high magnet, with rapid adjustments to large changes in the field strength, it is a mandatory acces-sory to development a special NMR probes to provide a precise real-time map of the magnetic field...To construct pulsed high magnet, with rapid adjustments to large changes in the field strength, it is a mandatory acces-sory to development a special NMR probes to provide a precise real-time map of the magnetic field. In order to do so, it is necessary to understand the variations of the spin transition and susceptibility of NMR samples in a time dependent longitudinal field. This work analyzes the effect on the spin transition by a time dependent longitudinal field. For a 1/2 spin system, we have derived a simple formula for the prediction of the probabilities of occupation of the 1/2 and ?1/2 states in a non-static field. We also calculate the magnetic susceptibility of the water and give an analysis of the effect on the magnetic susceptibility in a time dependent longitudinal field and RF frequency.展开更多
We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope(OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines(750 ...We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope(OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines(750 nm, 811 nm) is proportional to the plasma density determined by the Langmuir probe. The axial profile of helicon plasma depends on the discharge mode which changes with the RF power. Excited by helical antenna, the axial distribution of plasma density is similar to that of the external magnetic field in the capacitive coupled mode(E-mode). As the discharge mode changes into the inductively coupled mode(H-mode), the axial distribution of plasma density in the downstream can still be similar to that of the external magnetic field, but becomes more uniform in the upstream. When the discharge entered wave coupled mode(W-mode), the plasma becomes nearly uniform along the axis, showing a completely different profile from the magnetic field. The W-mode is expected to be a mixed pattern of helicon(H) and Trivelpiece-Gould(TG) waves.展开更多
By means of total energy calculations within the framework of the local density approximation (LDA), the interactions between a silicon Si(001) surface and a scanning probe are investigated. The tip of the probe, comp...By means of total energy calculations within the framework of the local density approximation (LDA), the interactions between a silicon Si(001) surface and a scanning probe are investigated. The tip of the probe, comprising 4 Si atoms scans along the dimer lines above an asymmetric p(2 × 1) surface, at a distance where the chemical interaction between tip-surface is dominant and responsible for image resolution. At that distance, the tip causes the dimer to toggle when it scans above the lower atom of a dimer. The toggled dimers create an alternating pattern, where the immediately adjacent neighbours of a toggled dimer remain unchanged. After the tip has fully scanned across the p(2 × 1) surface, causes the dimers to arrange in a p(2 × 2) reconstruction, reproducing the images obtained in scanning probe experiments. Our modelling methodology includes simulations that reveal the energy input required to overcome the barrier to the onset of dimer toggling. The results show that the energy input to overcome this barrier is lower for the p(2 × 1) surface than that for the p(2 × 2) or c(4 × 2) surfaces.展开更多
Time-resolved ultrafast spectroscopy has been widely employed in condensed matter physics(and other sciences)due to its unique advantages,such as ultrahigh temporal resolution,capability of detecting excited-states ab...Time-resolved ultrafast spectroscopy has been widely employed in condensed matter physics(and other sciences)due to its unique advantages,such as ultrahigh temporal resolution,capability of detecting excited-states above the Fermi surface,and generation of coherent boson excitations.It has been extensively used to investigate various condensed matter physics,including high-temperature superconductivity,complex phase transition.展开更多
针对卫星通信工作频率越来越高的应用需求,设计了一种工作在极高频(Extremely High Frequency,EHF)的接收模块,实现极高频射频信号的接收及下变频功能。模块内部集成波导-微带探针过渡、低噪声放大器、微带滤波器、本振电路、混频器及...针对卫星通信工作频率越来越高的应用需求,设计了一种工作在极高频(Extremely High Frequency,EHF)的接收模块,实现极高频射频信号的接收及下变频功能。模块内部集成波导-微带探针过渡、低噪声放大器、微带滤波器、本振电路、混频器及供电电路,具有低噪声系数、高增益、高带外抑制的优点。采用单片微波集成电路(Monolithic Microwave Integrated Circuit,MMIC)混合多功能集成技术实现了模块的小型化、通用化,可适应多种场景下的极高频收发前端应用,具有广阔的应用前景。展开更多
基金supported by the National Magnetic Confinement Fusion Science Program of China (No. 2011GB107001)National Natural Science Foundation of China (Nos. 11075181, 10725523, 10721505, 10990212, 10605028)the ITER project of China (No. 2010GB104001)
文摘As the power available in the initial phase of the ITER operation will be limited, accessing the high confinement mode (H-mode) with low heating power will be a critical issue. In the recent experiment on EAST, the H-mode was obtained for the first time with lower hybrid current drive (LHCD) wave only. Reciprocating Langmuir probe measurements at the outer midplane showed that the electron density ne and electron tempel:ature Te in the scrape-off layer (SOL) were significantly reduced in the ELM-free phase, resulting in the increase of lower-hybrid wave (LHW) reflection. It was found that the power loss Ploss was comparable during the L-H transition, by comparing the adjacent L-mode and H-mode discharge. The Da emission, Te and ne decreased rapidly in the time scale of about 1 ms, and the radial electric field Er turned positive in this process near the last closed flux surface. Multiple L-H-L transitions were observed during a single shot when the applied LHW power was marginal to the threshold. The floating potential (Vf) had negative spikes corresponding with the Da signal, and Er oscillation evolved into several intermittent negative spikes just before the L-H transition. In some shots, dithering was observed just before the L-H transition.
基金supported by the National Natural Science Foundation of China(Grant Nos.81788101,T2125011,and 11874338)the National Key R&D Program of China(Grant No.2018YFA0306600)+2 种基金Chinese Academy of Sciences(Grants Nos.XDC07000000,GJJSTD20200001,QYZDY-SSW-SLH004,and ZDZBGCH2021002)Anhui Initiative in Quantum Information Technologies(Grant No.AHY050000)Fundamental Research Funds for the Central Universities。
文摘Recently,magnetism in two-dimensional(2 D)van der Waals(vd W)materials has attracted wide interests.It is anticipated that these materials will stimulate discovery of new physical phenomena and novel applications.The capability to quantitatively measure the magnetism of 2 D magnetic vd W materials is essential to understand these materials.Here we report on quantitative measurements of ferromagnetic-to-paramagnetic phase transition of an atomically thin(down to 11 nm)vd W magnet,namely Cr Br_(3),with a Curie point of 37.5 K.This experiment demonstrates that surface magnetism can be quantitatively investigated,which is useful for a wide variety of potential applications.
基金supported mainly by the “Agence de la Biomedecine” through its program of Research(AOR 2009)BM,AC,BP,WM,VCI and VE acknowledged funding of project ANR-13-TECS-0006 by the Agence Nationale de la Recherche
文摘Background: The hepatic hemodynamics is an essential parameter in surgical planning as well as in various disease processes. The transit time ultrasound(TTUS) perivascular flow probe technology is widely used in clinical practice to evaluate the hepatic inflow, yet invasive. The phase-contrast-MRI(PC-MRI) is not invasive and potentially applicable in assessing the hepatic blood flow. In the present study, we compared the hepatic inflow rates using the PC-MRI and the TTUS probe, and evaluated their predictive value of post-hepatectomy adverse events. Methods: Eighteen large white pigs were anaesthetized for PC-MRI and approximately 75% hepatic resection was performed under a unified protocol. The blood flow was measured in the hepatic artery(Qha), the portal vein(Qpv), and the aorta above the celiac trunk(Qca) using PC-MRI, and was compared to the TTUS probe. The Bland-Altman method was conducted and a partial least squares regression(PLS) model was implemented. Results: The mean Qpv measured in PC-MRI was 0.55 ± 0.12 L/min, and in the TTUS probe was 0.74 ± 0.17 L/min. Qca was 1.40 ± 0.47 L/min in the PC-MRI and 2.00 ± 0.60 L/min in the TTUS probe. Qha was 0.17 ± 0.10 L/min in the PC-MRI, and 0.13 ± 0.06 L/min in the TTUS probe. The Bland-Altman method revealed that the estimated bias of Qca in the PC-MRI was 32%(95% CI:-49% to 15%); Qha 17%(95% CI:-15% to 51%); and Qpv 40%(95% CI:-62% to 18%). The TTUS probe had a higher weight in predicting adverse outcomes after 75% resection compared to the PC-MRI( β= 0.35 and 0.43 vs β = 0.22 and 0.07, for tissue changes and premature death, respectively). Conclusions: There is a tendency of the PC-MRI to underestimate the flow measured by the TTUS probes. The TTUS probe measures are more predictive of relevant post-hepatectomy outcomes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11075029 and 11175034)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090041110026)the Fundamental Research Funds for Central Universities of China(Grant No. DUT11ZD109)
文摘A Langmuir probe and an ICCD are employed to study the discharge mode transition in Ar inductively coupled plasma. Electron density and plasma emission intensity are measured during the E (capacitive discharge) to H (inductive discharge) mode transitions at different pressures. It is found that plasma exists with a low electron density and a weak emission intensity in the E mode, while it has a high electron density and a strong emission intensity in the H mode. Meanwhile, the plasma emission intensity spatial (2D an asymmetric profile in the E mode. Moreover, the at high pressure, but increase almost continuously at image) profile is symmetrical in the H mode, but the 2D image is electron density and emission intensity jump up discontinuously the E to H mode transition under low pressure.
基金partially supported by Quaid-i-Azam University URF for the year 2019-2020Higher Education Commission(HEC)P.No.820 for Plasma Physics Gomal University(D I Khan)。
文摘In this paper,E-H mode transition in magnetic-pole-enhanced inductively coupled neon-argon mixture plasma is investigated in terms of fundamental plasma parameters as a function of argon fraction(0%-100%),operating pressure(1 Pa,5 Pa,10 Pa and 50 Pa),and radio frequency(RF)power(5-100 W).An RF compensated Langmuir probe and optical emission spectroscopy are used for the diagnostics of the plasma under study.Owing to the lower ionization potential and higher collision cross-section of argon,when its fraction in the discharge is increased,the mode transition occurs at lower RF power;i.e.for 0%argon and1 Pa pressure,the threshold power of the E-H mode transition is 65 W,which reduces to 20 W when the argon fraction is increased.The electron density increases with the argon fraction at afixed pressure,whereas the temperature decreases with the argon fraction.The relaxation length of the low-energy electrons increases,and decreases for high-energy electrons with argon fraction,due to the Ramseur effect.However,the relaxation length of both groups of electrons decreases with pressure due to reduction in the mean free path.The electron energy probability function(EEPF)profiles are non-Maxwellian in E-mode,attributable to the nonlocal electron kinetics in this mode;however,they evolve to Maxwellian distribution when the discharge transforms to H-mode due to lower electron temperature and higher electron density in H-mode.The tail of the measured EEPFs is found to deplete in both E-and H-modes when the argon fraction in the discharge is increased,because argon has a much lower excitation potential(11.5 eV)than neon(16.6 eV).
文摘To construct pulsed high magnet, with rapid adjustments to large changes in the field strength, it is a mandatory acces-sory to development a special NMR probes to provide a precise real-time map of the magnetic field. In order to do so, it is necessary to understand the variations of the spin transition and susceptibility of NMR samples in a time dependent longitudinal field. This work analyzes the effect on the spin transition by a time dependent longitudinal field. For a 1/2 spin system, we have derived a simple formula for the prediction of the probabilities of occupation of the 1/2 and ?1/2 states in a non-static field. We also calculate the magnetic susceptibility of the water and give an analysis of the effect on the magnetic susceptibility in a time dependent longitudinal field and RF frequency.
基金supported by National Natural Science Foundation of China (Nos. 11475131, 11805011)
文摘We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope(OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines(750 nm, 811 nm) is proportional to the plasma density determined by the Langmuir probe. The axial profile of helicon plasma depends on the discharge mode which changes with the RF power. Excited by helical antenna, the axial distribution of plasma density is similar to that of the external magnetic field in the capacitive coupled mode(E-mode). As the discharge mode changes into the inductively coupled mode(H-mode), the axial distribution of plasma density in the downstream can still be similar to that of the external magnetic field, but becomes more uniform in the upstream. When the discharge entered wave coupled mode(W-mode), the plasma becomes nearly uniform along the axis, showing a completely different profile from the magnetic field. The W-mode is expected to be a mixed pattern of helicon(H) and Trivelpiece-Gould(TG) waves.
文摘By means of total energy calculations within the framework of the local density approximation (LDA), the interactions between a silicon Si(001) surface and a scanning probe are investigated. The tip of the probe, comprising 4 Si atoms scans along the dimer lines above an asymmetric p(2 × 1) surface, at a distance where the chemical interaction between tip-surface is dominant and responsible for image resolution. At that distance, the tip causes the dimer to toggle when it scans above the lower atom of a dimer. The toggled dimers create an alternating pattern, where the immediately adjacent neighbours of a toggled dimer remain unchanged. After the tip has fully scanned across the p(2 × 1) surface, causes the dimers to arrange in a p(2 × 2) reconstruction, reproducing the images obtained in scanning probe experiments. Our modelling methodology includes simulations that reveal the energy input required to overcome the barrier to the onset of dimer toggling. The results show that the energy input to overcome this barrier is lower for the p(2 × 1) surface than that for the p(2 × 2) or c(4 × 2) surfaces.
基金supported by the National Key Research and Development Program of Chinathe National Natural Science Foundation of China+3 种基金the Chinese Academy of Sciences Interdisciplinary Innovation Teamthe International Partnership Program of CASthe Strategic Priority Research Program of CASthe Beijing Natural Science Foundation
文摘Time-resolved ultrafast spectroscopy has been widely employed in condensed matter physics(and other sciences)due to its unique advantages,such as ultrahigh temporal resolution,capability of detecting excited-states above the Fermi surface,and generation of coherent boson excitations.It has been extensively used to investigate various condensed matter physics,including high-temperature superconductivity,complex phase transition.