Undersampling and pixelation affect a number of imaging systems, limiting the resolution of the acquired images, whichbecomes particularly significant for wide-field microscopy applications. Various super-resolution t...Undersampling and pixelation affect a number of imaging systems, limiting the resolution of the acquired images, whichbecomes particularly significant for wide-field microscopy applications. Various super-resolution techniques have been implemented to mitigate this resolution loss by utilizing sub-pixel displacements in the imaging system, achieved, for example, byshifting the illumination source, the sensor array and/or the sample, followed by digital synthesis of a smaller effective pixel bymerging these sub-pixel-shifted low-resolution images. Herein, we introduce a new pixel super-resolution method that is basedon wavelength scanning and demonstrate that as an alternative to physical shifting/displacements, wavelength diversity can beused to boost the resolution of a wide-field imaging system and significantly increase its space-bandwidth product. We confirmedthe effectiveness of this new technique by improving the resolution of lens-free as well as lens-based microscopy systems anddeveloped an iterative algorithm to generate high-resolution reconstructions of a specimen using undersampled diffraction patterns recorded at a few wavelengths covering a narrow spectrum (10–30 nm). When combined with a synthetic-aperture-baseddiffraction imaging technique, this wavelength-scanning super-resolution approach can achieve a half-pitch resolution of250 nm, corresponding to a numerical aperture of ~ 1.0, across a large field of view (420 mm^(2)). We also demonstrated theeffectiveness of this approach by imaging various biological samples, including blood and Papanicolaou smears. Compared withdisplacement-based super-resolution techniques, wavelength scanning brings uniform resolution improvement in all directionsacross a sensor array and requires significantly fewer measurements. This technique would broadly benefit wide-field imagingapplications that demand larger space-bandwidth products.展开更多
波长快速扫描系统在算力网络、5G前传网络以及新一代可重构光分插复用系统等领域起着重要作用,整个波长扫描测试系统的性能基本取决于激光器性能的优劣。为此,基于In Ga As P/In P增益芯片优异的宽光谱光学特性和Littman-Metcalf外腔反...波长快速扫描系统在算力网络、5G前传网络以及新一代可重构光分插复用系统等领域起着重要作用,整个波长扫描测试系统的性能基本取决于激光器性能的优劣。为此,基于In Ga As P/In P增益芯片优异的宽光谱光学特性和Littman-Metcalf外腔反馈原理研制了一台具备宽调谐范围、高扫描速度以及无模式跳变等特点的可调谐激光器。实验上获得了240 nm/s的最高扫描速度、0.001 nm的最小步进触发间隔、优于±1.3 pm/1 min的波长稳定性、优于2.39 pm的绝对波长精度、优于±0.02 d B/1 min的功率稳定性及无跳模范围为110 nm的单纵模扫频输出。该研究有助于推动波长快速扫描测试系统的研究进程,提升波分复用等器件的测试精度和效率。展开更多
InAsSb epilayers with a cutoff wavelength of 4.8 μm have been successfully grown on InAs substrates by one-step liquid phase epitaxy (LPE) technology. The epilayers were characterized by X-ray diffraction (XRD), ...InAsSb epilayers with a cutoff wavelength of 4.8 μm have been successfully grown on InAs substrates by one-step liquid phase epitaxy (LPE) technology. The epilayers were characterized by X-ray diffraction (XRD), Fourier transform infrared (PTIR) transmittance measurements and scanning electron microscopy (SEM). The influence of different growth conditions on the optical and structural properties of the materials was studied. The results revealed that the good crystalline quality, mirror smooth surface and flat interface of InAsSb epilayers were achieved. They benefited from optimized growth conditions, i.e., sufficient homogeneity of the growth melt and a very slow cooling rate.展开更多
The singlet and triplet excited-state refraction cross-sections of dimethyl sulfoxide (DMSO) solutions of ten zinc phthalocyanine derivatives with mono-or tetra-peripheral substituents at 532 nm were obtained by simul...The singlet and triplet excited-state refraction cross-sections of dimethyl sulfoxide (DMSO) solutions of ten zinc phthalocyanine derivatives with mono-or tetra-peripheral substituents at 532 nm were obtained by simultaneous fitting of closed-aperture Z scans with both nanosecond and picosecond pulse widths. Self-focusing of both nanosecond and picosecond laser pulses was observed in all complexes at 532-nm wavelength. The complexes with tetra-substituents at the ?-position exhibit relatively larger refraction cross-sections than the other complexes. The wavelength dependence of the singlet refraction cross-section of a representative complex was observed to be non-monotonic in the range of 470 - 550 nm.展开更多
基金The Ozcan Research Group at UCLA gratefully acknowledges the support of the Presidential Early Career Award for Scientists and Engineers(PECASE),the Army Research Office(ARO,W911NF-13-1-0419 and W911NF-13-1-0197)the ARO Life Sciences Division,the ARO Young Investigator Award,the National Science Foundation(NSF)CAREER Award,the NSF CBET Division Biophotonics Program,the NSF Emerging Frontiers in Research and Innovation(EFRI)Award,the NSF EAGER Award,NSF INSPIRE Award,NSF PFI(Partnerships for Innovation)Award,the Office of Naval Research(ONR)+1 种基金and the Howard Hughes Medical Institute(HHMI)This work is based on research performed in a laboratory renovated by the National Science Foundation under Grant No.0963183,which is an award funded under the American Recovery and Reinvestment Act of 2009(ARRA).
文摘Undersampling and pixelation affect a number of imaging systems, limiting the resolution of the acquired images, whichbecomes particularly significant for wide-field microscopy applications. Various super-resolution techniques have been implemented to mitigate this resolution loss by utilizing sub-pixel displacements in the imaging system, achieved, for example, byshifting the illumination source, the sensor array and/or the sample, followed by digital synthesis of a smaller effective pixel bymerging these sub-pixel-shifted low-resolution images. Herein, we introduce a new pixel super-resolution method that is basedon wavelength scanning and demonstrate that as an alternative to physical shifting/displacements, wavelength diversity can beused to boost the resolution of a wide-field imaging system and significantly increase its space-bandwidth product. We confirmedthe effectiveness of this new technique by improving the resolution of lens-free as well as lens-based microscopy systems anddeveloped an iterative algorithm to generate high-resolution reconstructions of a specimen using undersampled diffraction patterns recorded at a few wavelengths covering a narrow spectrum (10–30 nm). When combined with a synthetic-aperture-baseddiffraction imaging technique, this wavelength-scanning super-resolution approach can achieve a half-pitch resolution of250 nm, corresponding to a numerical aperture of ~ 1.0, across a large field of view (420 mm^(2)). We also demonstrated theeffectiveness of this approach by imaging various biological samples, including blood and Papanicolaou smears. Compared withdisplacement-based super-resolution techniques, wavelength scanning brings uniform resolution improvement in all directionsacross a sensor array and requires significantly fewer measurements. This technique would broadly benefit wide-field imagingapplications that demand larger space-bandwidth products.
文摘波长快速扫描系统在算力网络、5G前传网络以及新一代可重构光分插复用系统等领域起着重要作用,整个波长扫描测试系统的性能基本取决于激光器性能的优劣。为此,基于In Ga As P/In P增益芯片优异的宽光谱光学特性和Littman-Metcalf外腔反馈原理研制了一台具备宽调谐范围、高扫描速度以及无模式跳变等特点的可调谐激光器。实验上获得了240 nm/s的最高扫描速度、0.001 nm的最小步进触发间隔、优于±1.3 pm/1 min的波长稳定性、优于2.39 pm的绝对波长精度、优于±0.02 d B/1 min的功率稳定性及无跳模范围为110 nm的单纵模扫频输出。该研究有助于推动波长快速扫描测试系统的研究进程,提升波分复用等器件的测试精度和效率。
基金provided by the National Natural Science Foundation of China (No. 60777022)the Program for Young Excellent Tal-ents in Tongji University
文摘InAsSb epilayers with a cutoff wavelength of 4.8 μm have been successfully grown on InAs substrates by one-step liquid phase epitaxy (LPE) technology. The epilayers were characterized by X-ray diffraction (XRD), Fourier transform infrared (PTIR) transmittance measurements and scanning electron microscopy (SEM). The influence of different growth conditions on the optical and structural properties of the materials was studied. The results revealed that the good crystalline quality, mirror smooth surface and flat interface of InAsSb epilayers were achieved. They benefited from optimized growth conditions, i.e., sufficient homogeneity of the growth melt and a very slow cooling rate.
文摘The singlet and triplet excited-state refraction cross-sections of dimethyl sulfoxide (DMSO) solutions of ten zinc phthalocyanine derivatives with mono-or tetra-peripheral substituents at 532 nm were obtained by simultaneous fitting of closed-aperture Z scans with both nanosecond and picosecond pulse widths. Self-focusing of both nanosecond and picosecond laser pulses was observed in all complexes at 532-nm wavelength. The complexes with tetra-substituents at the ?-position exhibit relatively larger refraction cross-sections than the other complexes. The wavelength dependence of the singlet refraction cross-section of a representative complex was observed to be non-monotonic in the range of 470 - 550 nm.