Continuous-wave cavity ring-down spectroscopy(CW-CRDS)is an important technical means to monitor greenhouse gases in atmospheric environment.In this paper,a CW-CRDS system is built to meet the needs of atmospheric met...Continuous-wave cavity ring-down spectroscopy(CW-CRDS)is an important technical means to monitor greenhouse gases in atmospheric environment.In this paper,a CW-CRDS system is built to meet the needs of atmospheric methane monitoring.The problem of mode matching is explained from the perspective of transverse mode and longitudinal mode,and the influence of laser injection efficiency on measurement precision is further analyzed.The results of cavity ring-down time measurement show that the measurement precision is higher when the laser is coupled with the fundamental mode.In the experiment,DFB laser is used to calibrate the system with standard methane concentration,and the measurement residual is less than±4×10^(-4)μs^(-1).The methane concentration in the air is monitored in real time for two days.The results show the consistency of the concentration changes over the two days,which further demonstrates the reliability of the system for the measurement of trace methane.By analyzing the influence of mode matching,it not only assists the adjustment of the optical path,but also further improves the sensitivity of the system measurement.展开更多
Near-infrared continuous wave cavity ring-down spectroscopy was applied to mea- sure the OH radicals in dielectric barrier discharge plasmas, which play an important role in combustion systems, atmospheric chemistry a...Near-infrared continuous wave cavity ring-down spectroscopy was applied to mea- sure the OH radicals in dielectric barrier discharge plasmas, which play an important role in combustion systems, atmospheric chemistry and the removal of air pollutants by non-thermal plasmas. The P-branches of OH X2YIi (vI : 2 +-- it 0) bands were used for number density measurements. The OH number density and plasma temperature were determined for different applied voltages, gas pressures and concentrations of both oxygen and water. The temporal evolu- tion of the OH number density was obtained by using the "time window" method, which was used to extract individual ring-down times at different times in a half period of the sine wave applied voltage in dielectric barrier discharge plasmas.展开更多
NO3 and N2O5 are important participants in nocturnal atmospheric chemical processes,and their concentrations are of great significance in the study of the mechanism of nocturnal atmospheric chemical reactions.A two-ch...NO3 and N2O5 are important participants in nocturnal atmospheric chemical processes,and their concentrations are of great significance in the study of the mechanism of nocturnal atmospheric chemical reactions.A two-channel diode laser based cavity ring-down spectroscopy(CRDS)instrument was developed to monitor the concentrations of NO3 and N2O5 in the atmosphere.The effective absorption length ratio and the total loss coefficient of the instrument were calibrated using laboratory standard samples.The effective absorption cross section of NO3 at 662 nm was derived.A detection sensitivity of 1.1 pptv NO3 in air was obtained at a time resolution of 1 s.N2O5 was converted to NO3 and detected online in the second CRDS channel.The instrument was used to monitor the concentrations of NO3 and N2O5 in the atmosphere of winter in Hefei in real time.By comparing the concentration changes of pollutants such as nitrogen oxides,ozone,PM2:5 in a rapid air cleaning process,the factors affecting the concentrations of NO3 and N2O5 in the atmosphere were discussed.展开更多
H_(2)S is one of the most important characteristic decomposition components of SF_(6)insulated gas,and the detection of trace H_(2)S is significant for early fault diagnosis of gas insulated electrical equipment.A 157...H_(2)S is one of the most important characteristic decomposition components of SF_(6)insulated gas,and the detection of trace H_(2)S is significant for early fault diagnosis of gas insulated electrical equipment.A 1578 nm wavelength distributed feedback diode laser(DFB-DL)based cavity ring-down spectroscopy(CRDS)experimental platform is developed to monitor the concentrations of H_(2)S in SF_(6)and SF_(6)/N_(2)mixture carrier gas.The detection sensitivity is higher than 1×10^(-6).The absorption cross section parameterσis vital for calculating the concentration.With repeated experiments using standard gas samples,parameterσof H_(2)S in pure SF_(6)and SF_(6)/N_(2)mixture carrier with different mixing ratios is calibrated.Compared with the simulatedσvalues,the influence of carrier gas on the broadening of spectral profile is discussed.The variation of absorption cross sectionσwith different carrier gas mixing ratios is studied as well,so that the calculation of the concentration in the carrier gas of any mixing ratio is possible.Thus,the application of CRDS in trace component detection of gas insulated electrical equipment is promising.展开更多
Transitions of the 6υ3 overtone band of ^14N2 ^16O near 775 nm have been studied by continuous-wave cavity ring-down spectroscopy. Line positions and intensities were derived from a fit of the line shape using a hard...Transitions of the 6υ3 overtone band of ^14N2 ^16O near 775 nm have been studied by continuous-wave cavity ring-down spectroscopy. Line positions and intensities were derived from a fit of the line shape using a hard-collisional profile. The line positions determined with absolute accuracy of 5×10^-4 cm^-1 allowed us to reveal finer ro-vibrational couplings taking place after J〉14 except a strong anharmonic interaction identified by the effective Hamiltonian model. The absolute line intensities have also been retrieved with an estimated accuracy of 2% for a majority of the unblended lines. A new set of ro-vibrational and dipole moment parameters were derived from the experimental values. A comparison between the line positions and intensities of the 6υ3 band obtained in this work and those from previous studies is given.展开更多
A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with ...A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.展开更多
Fast and accurate quantitative detection of ^(14)CO_(2) has impor-tant applications in many elds.The optical detection method based on the sensitive cavity ring-down spectroscopy technol-ogy has great potential.But cu...Fast and accurate quantitative detection of ^(14)CO_(2) has impor-tant applications in many elds.The optical detection method based on the sensitive cavity ring-down spectroscopy technol-ogy has great potential.But currently it has diffculties of insuffcient sensitivity and susceptibility to absorption of other isotopes/impurity molecules.We propose a stepped double-resonance spectroscopy method to excite ^(14)CO_(2) molecules to an intermediate vibrationally excited state,and use cavity ring-down spectroscopy to probe them.The two-photon process signi cantly improves the selectivity of detection.We derive the quantitative measurement capability of double-resonance absorption spectroscopy.The simulation results show that the double-resonance spectroscopy measurement is Doppler-free,thereby reducing the e ect of other molecular absorption.It is expected that this method can achieve high-selectivity detection of ^(14)CO_(2) at the sub-ppt level.展开更多
A novel fiber magnetic sensor based on the fiber Bragg grating Fabry-Perot (FBG-FP) cavity ring-down technique with pulse laser injection is proposed and demonstrated theoretically. A general expression of the inten...A novel fiber magnetic sensor based on the fiber Bragg grating Fabry-Perot (FBG-FP) cavity ring-down technique with pulse laser injection is proposed and demonstrated theoretically. A general expression of the intensity of the output electric field is derived, and the effect of the external magnetic field on the ring-down time is discussed. The results show that the output light intensity and the ring-down time of the FBG-FP cavity are in the inverse proportion to the magnitude of the external magnetic field. Our results demonstrate the new concept of the fiber magnetic sensor with the FBG-FP cavity ring-down spectroscopy and the technical feasibility.展开更多
Carbon dioxide pressure-broadened ro-vibrational transitions belonging to thev^2+3v^3 band of H2160 have been measured with a sensitive cavity ring-down spectrometer. Water vapor of relatively low pressures (〈0.5 T...Carbon dioxide pressure-broadened ro-vibrational transitions belonging to thev^2+3v^3 band of H2160 have been measured with a sensitive cavity ring-down spectrometer. Water vapor of relatively low pressures (〈0.5 Torr) was used to limit the self-collisions among water molecules. After the calibration using the precise atomic transitions of Rb and a thermo- stabilized Fabry-Perot interferometer, 10^-5 cm^-1 frequency accuracy has been achieved. Line parameters are derived from least-squares fitting of the spectra using the "soft" collision model. The retrieved line parameters can be applied in the study of water absorption in the CO2-rich atmospheres of planets like Venus and Mars.展开更多
Comprehensive observations of the nocturnal atmospheric oxidation of NO_(3)and N_(2)O_(5)were conducted at a suburban site in Changzhou in the YRD using cavity ring-down spectroscopy(CRDS)from 27 May to 24 June,2019.H...Comprehensive observations of the nocturnal atmospheric oxidation of NO_(3)and N_(2)O_(5)were conducted at a suburban site in Changzhou in the YRD using cavity ring-down spectroscopy(CRDS)from 27 May to 24 June,2019.High concentrations of NO_(3)precursors were observed,and the nocturnal production rate of NO_(3)was determined to be 1.7±1.2 ppbv/hr.However,the nighttime NO_(3)and N_(2)O_(5)concentrations were relatively low,with maximum values of 17.7 and 304.7 pptv,respectively,illustrating the rapid loss ofNO_(3)andN_(2)O_(5).Itwas found that NO_(3)dominated the nighttime atmospheric oxidation,accounting for 50.7%,whileO3 andOH only contributed 34.1%and 15.2%,respectively.For the reactions of NO_(3)with volatile organic compounds(VOCs),styrenewas found to account for 60.3%,highlighting its dominant role in the NO_(3)reactivity.In general,the contributions of the reactions between NO_(3)and VOCs and the N_(2)O_(5)uptake to NO_(3)losswere found to be about 39.5%and 60.5%,respectively,indicating that N_(2)O_(5)uptake also played an important role in the loss of NO_(3)and N_(2)O_(5),especially under the high humidity conditions in China.The formation of nitrate at night mainly originated from N_(2)O_(5)uptake,and the maximum production rate of NO_(3)^(-)reached 6.5 ppbv/hr.The average NOx consumption rate via NO_(3)and N_(2)O_(5)chemistry was found to be 0.4 ppbv/h,accounting for 47.9%of the total NO_(x)removal.The predominant roles of NO_(3)and N_(2)O_(5)in nitrate formation and NO_(x)removal in the YRD region was highlighted in this study.展开更多
Cavity ring-down spectroscopy(CRDS)was utilized in combination with chemical titration with sulfur dioxide(SO_2)to quantify stabilized Criegee intermediates(s CIs)produced at low pressures(4–20 Torr)in ozonolysis rea...Cavity ring-down spectroscopy(CRDS)was utilized in combination with chemical titration with sulfur dioxide(SO_2)to quantify stabilized Criegee intermediates(s CIs)produced at low pressures(4–20 Torr)in ozonolysis reactions of cis-2-butene,2-methyl-2-butene,cyclopentene,and cyclohexene.The yield of stabilized s CI,acetaldehyde oxide(CH_3CHOO),from cis-2-butene ozonolysis decreased with decreasing pressure and reached to 0.05±0.04 at the zero-pressure limit.The nonsymmetric alkene 2-methyl-2-butene produced two stabilized s CIs,CH_3CHOO and acetone oxide((CH_3)_2COO),and their total yield decreased with decreasing pressure and reached 0.01±0.03 at the zero-pressure limit.For cyclopentene and cyclohexene,the s CI yields were essentially constant near zero,as expected of endocyclic alkenes.The nascent yields of s CI of various alkenes are compared.展开更多
基金This research is financial supported by the Natural National Science Foundation of China(Grant Nos.11874364,41877311,and 42005107)the National Key Research and Development Program of China(Grant No.2017YFC0805004)the CAS&Bengbu Technology Transfer Project(Grant No.ZKBB202102).
文摘Continuous-wave cavity ring-down spectroscopy(CW-CRDS)is an important technical means to monitor greenhouse gases in atmospheric environment.In this paper,a CW-CRDS system is built to meet the needs of atmospheric methane monitoring.The problem of mode matching is explained from the perspective of transverse mode and longitudinal mode,and the influence of laser injection efficiency on measurement precision is further analyzed.The results of cavity ring-down time measurement show that the measurement precision is higher when the laser is coupled with the fundamental mode.In the experiment,DFB laser is used to calibrate the system with standard methane concentration,and the measurement residual is less than±4×10^(-4)μs^(-1).The methane concentration in the air is monitored in real time for two days.The results show the consistency of the concentration changes over the two days,which further demonstrates the reliability of the system for the measurement of trace methane.By analyzing the influence of mode matching,it not only assists the adjustment of the optical path,but also further improves the sensitivity of the system measurement.
基金supported by National Natural Science Foundation of China (Nos.10475015, 10975029)
文摘Near-infrared continuous wave cavity ring-down spectroscopy was applied to mea- sure the OH radicals in dielectric barrier discharge plasmas, which play an important role in combustion systems, atmospheric chemistry and the removal of air pollutants by non-thermal plasmas. The P-branches of OH X2YIi (vI : 2 +-- it 0) bands were used for number density measurements. The OH number density and plasma temperature were determined for different applied voltages, gas pressures and concentrations of both oxygen and water. The temporal evolu- tion of the OH number density was obtained by using the "time window" method, which was used to extract individual ring-down times at different times in a half period of the sine wave applied voltage in dielectric barrier discharge plasmas.
基金Hao Wu,Jian Chen,An-wen Liu,and Shui-ming Hu acknowledge the supports from the Ministry of Science and Technology of China(No.2013BAK12B00)the National Natural Science Foundation of China(No.21427804).
文摘NO3 and N2O5 are important participants in nocturnal atmospheric chemical processes,and their concentrations are of great significance in the study of the mechanism of nocturnal atmospheric chemical reactions.A two-channel diode laser based cavity ring-down spectroscopy(CRDS)instrument was developed to monitor the concentrations of NO3 and N2O5 in the atmosphere.The effective absorption length ratio and the total loss coefficient of the instrument were calibrated using laboratory standard samples.The effective absorption cross section of NO3 at 662 nm was derived.A detection sensitivity of 1.1 pptv NO3 in air was obtained at a time resolution of 1 s.N2O5 was converted to NO3 and detected online in the second CRDS channel.The instrument was used to monitor the concentrations of NO3 and N2O5 in the atmosphere of winter in Hefei in real time.By comparing the concentration changes of pollutants such as nitrogen oxides,ozone,PM2:5 in a rapid air cleaning process,the factors affecting the concentrations of NO3 and N2O5 in the atmosphere were discussed.
基金supported in part by the National Key R&D Program of China(No.2021YFF0603100)in part by the Leading Innovation and Entrepreneurship Team in Zhejiang Province(No.2019R01014)
文摘H_(2)S is one of the most important characteristic decomposition components of SF_(6)insulated gas,and the detection of trace H_(2)S is significant for early fault diagnosis of gas insulated electrical equipment.A 1578 nm wavelength distributed feedback diode laser(DFB-DL)based cavity ring-down spectroscopy(CRDS)experimental platform is developed to monitor the concentrations of H_(2)S in SF_(6)and SF_(6)/N_(2)mixture carrier gas.The detection sensitivity is higher than 1×10^(-6).The absorption cross section parameterσis vital for calculating the concentration.With repeated experiments using standard gas samples,parameterσof H_(2)S in pure SF_(6)and SF_(6)/N_(2)mixture carrier with different mixing ratios is calibrated.Compared with the simulatedσvalues,the influence of carrier gas on the broadening of spectral profile is discussed.The variation of absorption cross sectionσwith different carrier gas mixing ratios is studied as well,so that the calculation of the concentration in the carrier gas of any mixing ratio is possible.Thus,the application of CRDS in trace component detection of gas insulated electrical equipment is promising.
基金This work was supported by the National Key Basic Research Program of China (2013CB834602 and 2013BAK12B02), and the National Natural Science Foundation of China (No.21473172, No.21411130183, No.21303176).
文摘Transitions of the 6υ3 overtone band of ^14N2 ^16O near 775 nm have been studied by continuous-wave cavity ring-down spectroscopy. Line positions and intensities were derived from a fit of the line shape using a hard-collisional profile. The line positions determined with absolute accuracy of 5×10^-4 cm^-1 allowed us to reveal finer ro-vibrational couplings taking place after J〉14 except a strong anharmonic interaction identified by the effective Hamiltonian model. The absolute line intensities have also been retrieved with an estimated accuracy of 2% for a majority of the unblended lines. A new set of ro-vibrational and dipole moment parameters were derived from the experimental values. A comparison between the line positions and intensities of the 6υ3 band obtained in this work and those from previous studies is given.
文摘A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.
基金This work was jointly supported by the National Natural Science Foundation of China(No.21688102 and No.11974328)the Chinese Academy of Sci-ences(XDB21020100 and XDC07010000)An-hui Initiative in Quantum Information Technologies(AHY110000).
文摘Fast and accurate quantitative detection of ^(14)CO_(2) has impor-tant applications in many elds.The optical detection method based on the sensitive cavity ring-down spectroscopy technol-ogy has great potential.But currently it has diffculties of insuffcient sensitivity and susceptibility to absorption of other isotopes/impurity molecules.We propose a stepped double-resonance spectroscopy method to excite ^(14)CO_(2) molecules to an intermediate vibrationally excited state,and use cavity ring-down spectroscopy to probe them.The two-photon process signi cantly improves the selectivity of detection.We derive the quantitative measurement capability of double-resonance absorption spectroscopy.The simulation results show that the double-resonance spectroscopy measurement is Doppler-free,thereby reducing the e ect of other molecular absorption.It is expected that this method can achieve high-selectivity detection of ^(14)CO_(2) at the sub-ppt level.
文摘A novel fiber magnetic sensor based on the fiber Bragg grating Fabry-Perot (FBG-FP) cavity ring-down technique with pulse laser injection is proposed and demonstrated theoretically. A general expression of the intensity of the output electric field is derived, and the effect of the external magnetic field on the ring-down time is discussed. The results show that the output light intensity and the ring-down time of the FBG-FP cavity are in the inverse proportion to the magnitude of the external magnetic field. Our results demonstrate the new concept of the fiber magnetic sensor with the FBG-FP cavity ring-down spectroscopy and the technical feasibility.
基金ACKNOWLEDGMENTS This work is supported by the National Natural Science Foundation (No.21225314 and No.20903085), the National Basic Research Program of China (No.2013CB834602) and the Fundamental Research Funds for the Central Universities.
文摘Carbon dioxide pressure-broadened ro-vibrational transitions belonging to thev^2+3v^3 band of H2160 have been measured with a sensitive cavity ring-down spectrometer. Water vapor of relatively low pressures (〈0.5 Torr) was used to limit the self-collisions among water molecules. After the calibration using the precise atomic transitions of Rb and a thermo- stabilized Fabry-Perot interferometer, 10^-5 cm^-1 frequency accuracy has been achieved. Line parameters are derived from least-squares fitting of the spectra using the "soft" collision model. The retrieved line parameters can be applied in the study of water absorption in the CO2-rich atmospheres of planets like Venus and Mars.
基金supported by the National Natural Science Foundation of China(Nos.42030609,91644107,61905003,and U19A2044)the Natural Science Foundation of Anhui Province(No.2008085J20)+1 种基金the National Key Research and Development Program of China(No.2017YFC0209403)the Cultivating Project of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDPB1901)
文摘Comprehensive observations of the nocturnal atmospheric oxidation of NO_(3)and N_(2)O_(5)were conducted at a suburban site in Changzhou in the YRD using cavity ring-down spectroscopy(CRDS)from 27 May to 24 June,2019.High concentrations of NO_(3)precursors were observed,and the nocturnal production rate of NO_(3)was determined to be 1.7±1.2 ppbv/hr.However,the nighttime NO_(3)and N_(2)O_(5)concentrations were relatively low,with maximum values of 17.7 and 304.7 pptv,respectively,illustrating the rapid loss ofNO_(3)andN_(2)O_(5).Itwas found that NO_(3)dominated the nighttime atmospheric oxidation,accounting for 50.7%,whileO3 andOH only contributed 34.1%and 15.2%,respectively.For the reactions of NO_(3)with volatile organic compounds(VOCs),styrenewas found to account for 60.3%,highlighting its dominant role in the NO_(3)reactivity.In general,the contributions of the reactions between NO_(3)and VOCs and the N_(2)O_(5)uptake to NO_(3)losswere found to be about 39.5%and 60.5%,respectively,indicating that N_(2)O_(5)uptake also played an important role in the loss of NO_(3)and N_(2)O_(5),especially under the high humidity conditions in China.The formation of nitrate at night mainly originated from N_(2)O_(5)uptake,and the maximum production rate of NO_(3)^(-)reached 6.5 ppbv/hr.The average NOx consumption rate via NO_(3)and N_(2)O_(5)chemistry was found to be 0.4 ppbv/h,accounting for 47.9%of the total NO_(x)removal.The predominant roles of NO_(3)and N_(2)O_(5)in nitrate formation and NO_(x)removal in the YRD region was highlighted in this study.
基金supported by the US National Science Foundation (CHE-1566636)UCMEXUS-CONACYT Doctoral Fellowship
文摘Cavity ring-down spectroscopy(CRDS)was utilized in combination with chemical titration with sulfur dioxide(SO_2)to quantify stabilized Criegee intermediates(s CIs)produced at low pressures(4–20 Torr)in ozonolysis reactions of cis-2-butene,2-methyl-2-butene,cyclopentene,and cyclohexene.The yield of stabilized s CI,acetaldehyde oxide(CH_3CHOO),from cis-2-butene ozonolysis decreased with decreasing pressure and reached to 0.05±0.04 at the zero-pressure limit.The nonsymmetric alkene 2-methyl-2-butene produced two stabilized s CIs,CH_3CHOO and acetone oxide((CH_3)_2COO),and their total yield decreased with decreasing pressure and reached 0.01±0.03 at the zero-pressure limit.For cyclopentene and cyclohexene,the s CI yields were essentially constant near zero,as expected of endocyclic alkenes.The nascent yields of s CI of various alkenes are compared.