The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was...The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis.展开更多
A continuous wavelet transform(CWT)and globallocal feature(GLF)extraction-based signal classificationalgorithm is proposed to improve the signal classification accuracy.First,the CWT is utilized to generate the timefr...A continuous wavelet transform(CWT)and globallocal feature(GLF)extraction-based signal classificationalgorithm is proposed to improve the signal classification accuracy.First,the CWT is utilized to generate the timefrequency scalogram.Then,the GLF extraction method is proposed to extract features from the time-frequency scalogram.Finally,a classification method based on the support vector machine(SVM)is proposed to classify the extracted features.Experimental results show that the extended binary phase shift keying(EBPSK)bit error rate(BER)of the proposed classification algorithm is1.3x10_5under the environment of additional white Gaussian noise with the signal-to-noise ratio of-3dB,which is24times lower than that of the SVM-based signal classification method.Meanwhile,the BER using the GLF extraction method is13times lower than the one using the global feature extraction method and24times lower than the one using the local feature extraction method.展开更多
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (...Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.展开更多
文摘The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis.
基金The National Key Technology R&D Program(No.2012BAH15B00)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX150076)
文摘A continuous wavelet transform(CWT)and globallocal feature(GLF)extraction-based signal classificationalgorithm is proposed to improve the signal classification accuracy.First,the CWT is utilized to generate the timefrequency scalogram.Then,the GLF extraction method is proposed to extract features from the time-frequency scalogram.Finally,a classification method based on the support vector machine(SVM)is proposed to classify the extracted features.Experimental results show that the extended binary phase shift keying(EBPSK)bit error rate(BER)of the proposed classification algorithm is1.3x10_5under the environment of additional white Gaussian noise with the signal-to-noise ratio of-3dB,which is24times lower than that of the SVM-based signal classification method.Meanwhile,the BER using the GLF extraction method is13times lower than the one using the global feature extraction method and24times lower than the one using the local feature extraction method.
文摘Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.