期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Alcoholism Detection by Wavelet Energy Entropy and Linear Regression Classifier
1
作者 Xianqing Chen Yan Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期325-343,共19页
Alcoholism is an unhealthy lifestyle associated with alcohol dependence.Not only does drinking for a long time leads to poor mental health and loss of self-control,but alcohol seeps into the bloodstream and shortens t... Alcoholism is an unhealthy lifestyle associated with alcohol dependence.Not only does drinking for a long time leads to poor mental health and loss of self-control,but alcohol seeps into the bloodstream and shortens the lifespan of the body’s internal organs.Alcoholics often think of alcohol as an everyday drink and see it as a way to reduce stress in their lives because they cannot see the damage in their bodies and they believe it does not affect their physical health.As their drinking increases,they become dependent on alcohol and it affects their daily lives.Therefore,it is important to recognize the dangers of alcohol abuse and to stop drinking as soon as possible.To assist physicians in the diagnosis of patients with alcoholism,we provide a novel alcohol detection system by extracting image features of wavelet energy entropy from magnetic resonance imaging(MRI)combined with a linear regression classifier.Compared with the latest method,the 10-fold cross-validation experiment showed excellent results,including sensitivity 91.54±1.47%,specificity 93.66±1.34%,Precision 93.45±1.27%,accuracy 92.61±0.81%,F1 score 92.48±0.83%and MCC 85.26±1.62%. 展开更多
关键词 Alcohol detection wavelet energy entropy linear regression classifier cross-validation computer-aided diagnosis
下载PDF
Wavelet Energy Feature Extraction and Matching for Palmprint Recognition 被引量:19
2
作者 Xiang-QianWu Kuan-QuanWang DavidZhang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2005年第3期411-418,共8页
According to the fact that the basic features of a palmprint, includingprincipal lines, wrinkles and ridges, have different resolutions, in this paper we analyzepalmprints using a multi-resolution method and define a ... According to the fact that the basic features of a palmprint, includingprincipal lines, wrinkles and ridges, have different resolutions, in this paper we analyzepalmprints using a multi-resolution method and define a novel palmprint feature, which calledwavelet energy feature (WEF), based on the wavelet transform. WEF can reflect the wavelet energydistribution of the principal lines, wrinkles and ridges in different directions at differentresolutions (scales), thus it can efficiently characterize palmprints. This paper also analyses thediscriminabilities of each level WEF and, according to these discriminabilities, chooses a suitableweight for each level to compute the weighted city block distance for recognition. The experimentalresults show that the order of the discriminabilities of each level WEF, from strong to weak, is the4th, 3rd, 5th, 2nd and 1st level. It also shows that WEF is robust to some extent in rotation andtranslation of the images. Accuracies of 99.24% and 99.45% have been obtained in palmprintverification and palmprint identification, respectively. These results demonstrate the power of theproposed approach. 展开更多
关键词 BIOMETRICS palmprint recognition wavelet energy feature weighted cityblock distance
原文传递
Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum 被引量:3
3
作者 Yun KONG Tianyang WANG +1 位作者 Zheng LI Fulei CHU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2017年第3期406-419,共14页
Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration... Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect. 展开更多
关键词 wind turbine planet gear fault feature extraction spectral kurtosis time wavelet energy spectrum
原文传递
HYBRID WAVELET PACKET-TEAGER ENERGY OPERATOR ANALYSIS AND ITS APPLICATION FOR GEARBOX FAULT DIAGNOSIS 被引量:6
4
作者 LIU Xiaofeng QIN Shuren BO Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期79-83,共5页
Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and T... Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults. 展开更多
关键词 wavelet packet Teager energy operator Fault diagnosis Demodulation analysis
下载PDF
Research on Sleeve Grouting Density Detection Based on the Impact Echo Method
5
作者 Pu Zhang Yingjun Li +5 位作者 Xinyu Zhu Shizhan Xu Pinwu Guan Wei Liu Yanwei Guo Haibo Wang 《Structural Durability & Health Monitoring》 EI 2024年第2期143-159,共17页
Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the ... Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars. 展开更多
关键词 Prefabricated building steel grouting sleeve impact echo method wavelet packet energy grouted defect
下载PDF
Structural health monitoring of long-span suspension bridges using wavelet packet analysis 被引量:8
6
作者 丁幼亮 李爱群 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第3期289-294,共6页
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib... During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations. 展开更多
关键词 structural health monitoring wavelet packet analysis wavelet packet energy spectrum ambient vibration test long-span suspension bridge
下载PDF
Drill bit wear monitoring and failure prediction for mining automation
7
作者 Hamed Rafezi Ferri Hassani 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期289-296,共8页
This article introduces a novel approach for tricone bit wear condition monitoring and failure prediction for surface mining applications.A successful bit health monitoring system is essential to achieve fully autonom... This article introduces a novel approach for tricone bit wear condition monitoring and failure prediction for surface mining applications.A successful bit health monitoring system is essential to achieve fully autonomous blasthole drilling.In this research in-situ vibration signals were analyzed in timefrequency domain and signals trend during tricone bit life span were investigated and introduced to support the development of artificial intelligence(AI)models.In addition to the signal statistical features,wavelet packet energy distribution proved to be a powerful indicator for bit wear assessment.Backpropagation artificial neural network(ANN)models were designed,trained and evaluated for bit state classification.Finally,an ANN architecture and feature vector were introduced to classify the bit condition and predict the bit failure. 展开更多
关键词 Drilling vibration Condition monitoring Failure prediction Bit wear wavelet energy Mining automation
下载PDF
Analysis of Dynamic Tensile Process of Fiber Reinforced Concrete by Acoustic Emission Technique 被引量:8
8
作者 王岩 CHEN Shijie +2 位作者 GE Lu ZHOU Li HU Hongxiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1129-1139,共11页
The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fib... The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique. 展开更多
关键词 acoustic emission steel fiber polypropylene fiber strain rate acoustic emission wavelet energy spectrum peak frequency
下载PDF
Small-current grounding fault location method based on transient main resonance frequency analysis 被引量:2
9
作者 Yongjie Zhang Xiaojun Wang +2 位作者 Junjuan Li Yin Xu Guohong Wu 《Global Energy Interconnection》 2020年第4期324-334,共11页
The small-current grounding fault in distribution network is hard to be located because of its weak fault features.To accurately locate the faults,the transient process is analyzed in this paper.Through the study we t... The small-current grounding fault in distribution network is hard to be located because of its weak fault features.To accurately locate the faults,the transient process is analyzed in this paper.Through the study we take that the main resonant frequency and its corresponding component is related to the fault distance.Based on this,a fault location method based on double-end wavelet energy ratio at the scale corresponding to the main resonant frequency is proposed.And back propagation neural network(BPNN)is selected to fit the non-linear relationship between the wavelet energy ratio and fault distance.The performance of this proposed method has been verified in different scenarios of a simulation model in PSCAD/EMTDC. 展开更多
关键词 Small-current grounding fault location Main resonant frequency Double-end wavelet energy ratio Backpropagation neural network(BPNN)
下载PDF
Quantitative Diagnosis of Fault Severity Trend of Rolling Element Bearings 被引量:6
10
作者 CUI Lingli MA Chunqing +1 位作者 ZHANG Feibin WANG Huaqing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1254-1260,共7页
The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condi... The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized. 展开更多
关键词 rolling bearing fault quantitative analysis back-propagation neural network wavelet packet coefficient entropy wavelet packet energy ratio
下载PDF
Multi-mapping Fault Diagnosis of High Voltage Circuit Breaker Based on Mathematical Morphology and Wavelet Entropy 被引量:5
11
作者 Tianyao Ji Lin Yi +2 位作者 Wenhu Tang Mengjie Shi Q.H.Wu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第1期130-138,共9页
Mechanical faults of high voltage circuit breakers(CBs)seriously affect the reliability of their operation,which may cause severe damage to power systems.In order to monitor operational conditions and detect mechanica... Mechanical faults of high voltage circuit breakers(CBs)seriously affect the reliability of their operation,which may cause severe damage to power systems.In order to monitor operational conditions and detect mechanical faults of CBs,a multi-parameter monitoring system is designed and a fault diagnosis method based on multi-mapping is proposed.The paper focuses on the trip/close circuits,the spring-charging mechanism and the transmission mechanism,and obtains four current signals and a vibration signal that can reflect CB conditions.For the current signals,a morphological filter is used to remove noise and then characteristics of the waveforms’shape information are extracted.For vibration signals,the wavelet packet transform is used to decompose the signal into various frequency bands,and the sample entropy of the low frequency bands and the wavelet energy of the high frequency bands are calculated,respectively.Based on these feature parameters,a multi-mapping strategy is proposed for CB fault diagnosis.Laboratory experiments have been conducted to obtain on-site signals under various conditions,and experiment results have verified that monitoring the aforementioned signals and using the corresponding feature extraction and fault diagnosis methods,the mechanical faults of high voltage CBs can be effectively diagnosed. 展开更多
关键词 Fault diagnosis high voltage circuit breaker multi-mapping sample entropy wavelet energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部