The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modelin...The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3).展开更多
In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series predi...In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series prediction model based on the wavelet process neural network, and develops the corresponding learning algorithm based on the expansion of the orthogonal basis functions. The effectiveness of the proposed time series prediction model and its learning algorithm is proved by the Macke-Glass time series prediction, and the comparative prediction results indicate that the proposed time series prediction model based on the wavelet process neural network seems to perform well and appears suitable for using as a good tool to predict the highly complex nonlinear time series.展开更多
Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So ...Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability.展开更多
An optimized damage identification method of beam combined wavelet with neural network is presented in an attempt to improve the calculation iterative speed and accuracy damage identification. The mathematical model i...An optimized damage identification method of beam combined wavelet with neural network is presented in an attempt to improve the calculation iterative speed and accuracy damage identification. The mathematical model is developed to identify the structure damage based on the theory of finite elements and rotation modal parameters. The model is integrated with BP neural network optimization approach which utilizes the Genetic algorithm optimization method. The structural rotation modal parameters are performed with the continuous wavelet transform through the Mexico hat wavelet. The location of structure damage is identified by the maximum of wavelet coefficients. Then, the multi-scale wavelet coefficients modulus maxima are used as the inputs of the BP neural network, and through training and updating the optimal weight and threshold value to obtain the ideal output which is used to describe the degree of structural damage. The obtained results demonstrate the effectiveness of the proposed approach in simultaneously improving the structural damage identification precision including the damage locating and severity.展开更多
>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in re...>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers.展开更多
基金Supported by the National Natural Science Foundation of China(No.21376185)
文摘The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3).
基金Project supported by the National Natural Science Foundation of China (Grant No 60572174)the Doctoral Fund of Ministry of Education of China (Grant No 20070213072)+2 种基金the 111 Project (Grant No B07018)the China Postdoctoral Science Foundation (Grant No 20070410264)the Development Program for Outstanding Young Teachers in Harbin Institute of Technology (Grant No HITQNJS.2007.010)
文摘In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series prediction model based on the wavelet process neural network, and develops the corresponding learning algorithm based on the expansion of the orthogonal basis functions. The effectiveness of the proposed time series prediction model and its learning algorithm is proved by the Macke-Glass time series prediction, and the comparative prediction results indicate that the proposed time series prediction model based on the wavelet process neural network seems to perform well and appears suitable for using as a good tool to predict the highly complex nonlinear time series.
文摘Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability.
文摘An optimized damage identification method of beam combined wavelet with neural network is presented in an attempt to improve the calculation iterative speed and accuracy damage identification. The mathematical model is developed to identify the structure damage based on the theory of finite elements and rotation modal parameters. The model is integrated with BP neural network optimization approach which utilizes the Genetic algorithm optimization method. The structural rotation modal parameters are performed with the continuous wavelet transform through the Mexico hat wavelet. The location of structure damage is identified by the maximum of wavelet coefficients. Then, the multi-scale wavelet coefficients modulus maxima are used as the inputs of the BP neural network, and through training and updating the optimal weight and threshold value to obtain the ideal output which is used to describe the degree of structural damage. The obtained results demonstrate the effectiveness of the proposed approach in simultaneously improving the structural damage identification precision including the damage locating and severity.
基金Project Supported by National Natural Science Foundation of China ( 50777069 ).
文摘>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers.