To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo...To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN.展开更多
Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we em...Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we employ discrete wavelet transform (DWT) combined with vector quantization (VQ) to compress audio data in order to reduce tremendous redundant data storage and transmission times. Secondly, we use wavelets as the activation functions in neural networks called feed-forward wavelet networks to approach auditory localization information cues (head-related transfer functions (HRTFs) are used here). The experimental results demonstrate that the application of wavelets is more efficient and useful in 3-D audio simulation.展开更多
准确的短期光伏功率预测对于保证电能质量及提高电力系统运行可靠性具有重要意义。为此,文章提出了一种基于小波变换和混合深度学习的短期光伏功率预测方法。首先,将天气类型分为理想天气(晴天)和非理想天气(多云、阴天等)。对于理想天...准确的短期光伏功率预测对于保证电能质量及提高电力系统运行可靠性具有重要意义。为此,文章提出了一种基于小波变换和混合深度学习的短期光伏功率预测方法。首先,将天气类型分为理想天气(晴天)和非理想天气(多云、阴天等)。对于理想天气,将历史光伏功率时间序列转化为二维图像作为混合深度学习模型(Hybrid Deep Learning Model,HDLM)的输入。对于非理想天气,使用小波变换对历史光伏功率时间序列进行分解,将得到的分量和气象参数转化成三维图像作为HDLM的输入。在HDLM中引入并行结构,由多个并列卷积神经网络和双向长短期记忆网络组成。实验结果表明,在理想天气和非理想天气条件下,所提短期光伏功率预测方法均具有较高的预测精度。展开更多
基金supported in part by the National Key Research and Development Program of China(No.2018YFB1500800)the National Natural Science Foundation of China(No.51807134)the State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology(No.EERI_KF20200014)。
文摘To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN.
文摘Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we employ discrete wavelet transform (DWT) combined with vector quantization (VQ) to compress audio data in order to reduce tremendous redundant data storage and transmission times. Secondly, we use wavelets as the activation functions in neural networks called feed-forward wavelet networks to approach auditory localization information cues (head-related transfer functions (HRTFs) are used here). The experimental results demonstrate that the application of wavelets is more efficient and useful in 3-D audio simulation.
文摘准确的短期光伏功率预测对于保证电能质量及提高电力系统运行可靠性具有重要意义。为此,文章提出了一种基于小波变换和混合深度学习的短期光伏功率预测方法。首先,将天气类型分为理想天气(晴天)和非理想天气(多云、阴天等)。对于理想天气,将历史光伏功率时间序列转化为二维图像作为混合深度学习模型(Hybrid Deep Learning Model,HDLM)的输入。对于非理想天气,使用小波变换对历史光伏功率时间序列进行分解,将得到的分量和气象参数转化成三维图像作为HDLM的输入。在HDLM中引入并行结构,由多个并列卷积神经网络和双向长短期记忆网络组成。实验结果表明,在理想天气和非理想天气条件下,所提短期光伏功率预测方法均具有较高的预测精度。