To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and ...To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.展开更多
An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish ...An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish the nugget from the corona bond. The 2D C-scan images produced by ultrasonic C scan which contribute to quantitatively calculate the nugget diameter for the computer are further analyzed. The spot welding nugget diameter can be automatically obtained by image enhancement, edge detection and equivalent diameter algorithm procedure. The ultrasonic detection values in this paper show good agreement with the metallographic measured values. The mean value of normal distribution curve is 0.006 67, and the standard deviation is 0.087 11. Ultrasonic C-scan test based on wavelet packet signal analysis is of high accuracy and stability.展开更多
A new time-domain analysis method that uses second generation wavelettransform (SGWT) for weak fault feature extraction is proposed. To extract incipient fault feature,a biorthogonal wavelet with the characteristics o...A new time-domain analysis method that uses second generation wavelettransform (SGWT) for weak fault feature extraction is proposed. To extract incipient fault feature,a biorthogonal wavelet with the characteristics of impact is constructed by using SGWT. Processingdetail signal of SGWT with a sliding window devised on the basis of rotating operation cycle, andextracting modulus maximum from each window, fault features in time-domain are highlighted. To makefurther analysis on the reason of the fault, wavelet package transform based on SGWT is used toprocess vibration data again. Calculating the energy of each frequency-band, the energy distributionfeatures of the signal are attained. Then taking account of the fault features and the energydistribution, the reason of the fault is worked out. An early impact-rub fault caused by axismisalignment and rotor imbalance is successfully detected by using this method in an oil refinery.展开更多
A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the ...A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the wet gas flow was conducted under the conditions of pipe diameter 50 mm, pressure from 0.25 MPa to 0.35 MPa, Lockhart-Martinelli parameter from 0.02 to 0.6, and gas Froude Number from 0.5 to 2.7. The flow-induced vibration signals were measured by a transducer installed on outside wall of pipe, and then the normalized energy features from different frequency bands in the vibration signals were extracted through 4-scale wavelet package transform. A "binary tree" multi-class support vector machine(MCSVM) classifier, with the normalized feature vector as inputs, and Gaussian radial basis function as kernel function, was developed to identify the three typical flow regimes including stratified wavy flow, annular mist flow, and slug flow for wet gas flow. The results show that the method can identify effectively flow regimes and its identification accuracy is about 93.3%. Comparing with the other classifiers, the MCSVM classifier has higher accuracy, especially under the case of small samples. The noninvasive measurement approach has great application prospect in online flow regime identification.展开更多
Baseline wander is a common noise in electrocardiogram (ECG) results.To effectively correct the baseline and to preserve more underlying components of an ECG signal,we propose a simple and novel filtering method based...Baseline wander is a common noise in electrocardiogram (ECG) results.To effectively correct the baseline and to preserve more underlying components of an ECG signal,we propose a simple and novel filtering method based on a statistical weighted moving average filter.Supposed a and b are theminimum and maximum of all sample values within a moving window,respectively.First,the whole region [a,b] is divided into M equal sub-regions without overlap.Second,three sub-regions with the largest sample distribution probabilities are chosen (except M<3) and incorporated into one region,denoted as [a 0,b 0 ] for simplicity.Third,for every sample point in the moving window,its weight is set to 1 if its value falls in [a 0,b 0 ];otherwise,its weight is 0.Last,all sample points with weight 1 are averaged to estimate the baseline.The algorithm was tested by simulated ECG signal and real ECG signal from www.physionet.org.The results showed that the proposed filter could more effectively extract baseline wander from ECG signal and affect the morphological feature of ECG signal considerably less than both the traditional moving average filter and wavelet package translation did.展开更多
基金Pre-Research Program of General Armament Departmentduring the11th Five-Year Plan Period(No.51309020503)the National De-fense Basic Research Program of China(973 Program)(No.973-61334)+1 种基金the National Natural Science Foundation of China(No.50575042)Specialized Research Fund for the Doctoral Program of Higher Education ( No.20050286026).
文摘To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.
基金Funded by Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science & Engineering,Jilin University
文摘An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish the nugget from the corona bond. The 2D C-scan images produced by ultrasonic C scan which contribute to quantitatively calculate the nugget diameter for the computer are further analyzed. The spot welding nugget diameter can be automatically obtained by image enhancement, edge detection and equivalent diameter algorithm procedure. The ultrasonic detection values in this paper show good agreement with the metallographic measured values. The mean value of normal distribution curve is 0.006 67, and the standard deviation is 0.087 11. Ultrasonic C-scan test based on wavelet packet signal analysis is of high accuracy and stability.
文摘A new time-domain analysis method that uses second generation wavelettransform (SGWT) for weak fault feature extraction is proposed. To extract incipient fault feature,a biorthogonal wavelet with the characteristics of impact is constructed by using SGWT. Processingdetail signal of SGWT with a sliding window devised on the basis of rotating operation cycle, andextracting modulus maximum from each window, fault features in time-domain are highlighted. To makefurther analysis on the reason of the fault, wavelet package transform based on SGWT is used toprocess vibration data again. Calculating the energy of each frequency-band, the energy distributionfeatures of the signal are attained. Then taking account of the fault features and the energydistribution, the reason of the fault is worked out. An early impact-rub fault caused by axismisalignment and rotor imbalance is successfully detected by using this method in an oil refinery.
基金Supported by the National Natural Science Foundation of China (60672003)
文摘A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the wet gas flow was conducted under the conditions of pipe diameter 50 mm, pressure from 0.25 MPa to 0.35 MPa, Lockhart-Martinelli parameter from 0.02 to 0.6, and gas Froude Number from 0.5 to 2.7. The flow-induced vibration signals were measured by a transducer installed on outside wall of pipe, and then the normalized energy features from different frequency bands in the vibration signals were extracted through 4-scale wavelet package transform. A "binary tree" multi-class support vector machine(MCSVM) classifier, with the normalized feature vector as inputs, and Gaussian radial basis function as kernel function, was developed to identify the three typical flow regimes including stratified wavy flow, annular mist flow, and slug flow for wet gas flow. The results show that the method can identify effectively flow regimes and its identification accuracy is about 93.3%. Comparing with the other classifiers, the MCSVM classifier has higher accuracy, especially under the case of small samples. The noninvasive measurement approach has great application prospect in online flow regime identification.
基金supported by the Science and Technology Project of Guangdong Province (No.2009B060700124)the Science and Technology Project of Guangzhou Municipality,Guangdong Province,China (No.2010Y1-C801)
文摘Baseline wander is a common noise in electrocardiogram (ECG) results.To effectively correct the baseline and to preserve more underlying components of an ECG signal,we propose a simple and novel filtering method based on a statistical weighted moving average filter.Supposed a and b are theminimum and maximum of all sample values within a moving window,respectively.First,the whole region [a,b] is divided into M equal sub-regions without overlap.Second,three sub-regions with the largest sample distribution probabilities are chosen (except M<3) and incorporated into one region,denoted as [a 0,b 0 ] for simplicity.Third,for every sample point in the moving window,its weight is set to 1 if its value falls in [a 0,b 0 ];otherwise,its weight is 0.Last,all sample points with weight 1 are averaged to estimate the baseline.The algorithm was tested by simulated ECG signal and real ECG signal from www.physionet.org.The results showed that the proposed filter could more effectively extract baseline wander from ECG signal and affect the morphological feature of ECG signal considerably less than both the traditional moving average filter and wavelet package translation did.