To early detect symptoms of defective rolling element bearings, this paper introduces discrete wavelet packet transform (DWPT)-based sub-band analysis. The objective of this analysis is to explore the impacts of mul...To early detect symptoms of defective rolling element bearings, this paper introduces discrete wavelet packet transform (DWPT)-based sub-band analysis. The objective of this analysis is to explore the impacts of multiple sub-band signals by 4-level DWPTusing proper Daubechies mother wavelet on a 2.5-second acoustic emission signal. In particular, the DWPT-based sub-bandanalysis determines the most informative sub-band signal involving intrinsic information about bearing defects among theaforementioned multiple sub-band signals based on the ratio of spectral magnitudes at harmonics of the bearing's characteristicfrequency to those around the harmonics. This paper also verifies the efficacy of the DWPT-based sub-band analysis for seededbearing defects (i.e., a crack on the inner race, the outer race, or a roller).展开更多
The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condi...The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.展开更多
文摘To early detect symptoms of defective rolling element bearings, this paper introduces discrete wavelet packet transform (DWPT)-based sub-band analysis. The objective of this analysis is to explore the impacts of multiple sub-band signals by 4-level DWPTusing proper Daubechies mother wavelet on a 2.5-second acoustic emission signal. In particular, the DWPT-based sub-bandanalysis determines the most informative sub-band signal involving intrinsic information about bearing defects among theaforementioned multiple sub-band signals based on the ratio of spectral magnitudes at harmonics of the bearing's characteristicfrequency to those around the harmonics. This paper also verifies the efficacy of the DWPT-based sub-band analysis for seededbearing defects (i.e., a crack on the inner race, the outer race, or a roller).
基金Supported by National Natural Science Foundation of China(Grant Nos.51175007,51075023)
文摘The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.