Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband ...Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.展开更多
The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has b...The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing.展开更多
A gear fault detection analysis method based on Fractional Wavelet Transform(FRWT)and Back Propagation Neural Network(BPNN)is proposed.Taking the changing order as the variable,the optimal order of gear vibration sign...A gear fault detection analysis method based on Fractional Wavelet Transform(FRWT)and Back Propagation Neural Network(BPNN)is proposed.Taking the changing order as the variable,the optimal order of gear vibration signals is determined by discrete fractional Fourier transform.Under the optimal order,the fractional wavelet transform is applied to eliminate noise from gear vibration signals.In this way,useful components of vibration signals can be successfully separated from background noise.Then,a set of feature vectors obtained by calculating the characteristic parameters for the de-noised signals are used to characterize the gear vibration features.Finally,the feature vectors are divided into two groups,including training samples and testing samples,which are input into the BPNN for learning and classification.Experimental results showed that this gear fault detection analysis method could well maintain the useful signal components related to gear faults and effectively extract the weak fault feature.The accuracy rate reached 96.67%in the identification of the type of gear fault.展开更多
Wavelet analysis theory is a new theory developed in recent years, it is a new timefrequency localization method. As its analyzing precision can be changed and focused to anydetail of the analyzed signal., it is very ...Wavelet analysis theory is a new theory developed in recent years, it is a new timefrequency localization method. As its analyzing precision can be changed and focused to anydetail of the analyzed signal., it is very useful to study unstationary signals. In this paper wemainly study the wavelet theory a,of its application in control systems. Furthermore, we use it todetect the fault of an underwater vehicle 's direction angle, and attained excellent results from thesimulation.展开更多
This paper introduces a multiresolution decomposition of signals based on their wavelet transform. The different behaviors of the wavelet transform between the signal and the noise are compared. An algorithm of singul...This paper introduces a multiresolution decomposition of signals based on their wavelet transform. The different behaviors of the wavelet transform between the signal and the noise are compared. An algorithm of singularity detection and processing in signals is proposed by the modulus maximum of the wavelet transform.展开更多
This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characterist...This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characteristics of a signal both in the time and frequency domains, the occurring instants of abnormal status of a sensor in the output signal can be identified by the multi-scale representation of the signal. Once the instants are detected, the distribution differences of the signal energy on all decomposed wavelet scales of the signal before and after the instants are used to claim and classify the sensor faults.展开更多
Fault diagnosis of rolling element bearings requires efficient signal processing techniques. For this purpose, the performances of envelope detection with fast Fourier transform (FFT) and continuous wavelet transfo...Fault diagnosis of rolling element bearings requires efficient signal processing techniques. For this purpose, the performances of envelope detection with fast Fourier transform (FFT) and continuous wavelet transform (CWT) of vibration signals produced from a bearing with defects on inner race and rolling element, have been examined at low signal to noise ratio. Both simulated and experimental signals from identical bearings have been considered for the purpose of analysis. The bearings have been modeled as spring-mass-dashpot systems and the simulated signals have been obtained considering transfer functions for the bearing systems subjected to impulsive loads due to the defects. Frequency B spline wavelets have been applied for CWT and a discussion on wavelet selection has been presented for better effectiveness. Results show that use of CWT with the proposed wavelets overcomes the short coming of FFT while processing a noisy vibration signals for defect detection of bearings.展开更多
When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform...When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform(ST)and average singular entropy(ASE)is proposed to identify HIFs.First,a wavelet packet transform(WPT)was applied to extract the feature frequency band.Thereafter,the ST was investigated in each half cycle.Afterwards,the obtained time-frequency matrix was denoised by singular value decomposition(SVD),followed by the calculation of the ASE index.Finally,an appropriate threshold was selected to detect the HIFs.The advantages of this method are the ability of fine band division,adaptive time-frequency transformation,and quantitative expression of signal complexity.The performance of the proposed method was verified by simulated and field data,and further analysis revealed that it could still achieve good results under different conditions.展开更多
To early detect symptoms of defective rolling element bearings, this paper introduces discrete wavelet packet transform (DWPT)-based sub-band analysis. The objective of this analysis is to explore the impacts of mul...To early detect symptoms of defective rolling element bearings, this paper introduces discrete wavelet packet transform (DWPT)-based sub-band analysis. The objective of this analysis is to explore the impacts of multiple sub-band signals by 4-level DWPTusing proper Daubechies mother wavelet on a 2.5-second acoustic emission signal. In particular, the DWPT-based sub-bandanalysis determines the most informative sub-band signal involving intrinsic information about bearing defects among theaforementioned multiple sub-band signals based on the ratio of spectral magnitudes at harmonics of the bearing's characteristicfrequency to those around the harmonics. This paper also verifies the efficacy of the DWPT-based sub-band analysis for seededbearing defects (i.e., a crack on the inner race, the outer race, or a roller).展开更多
Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new...Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new signal-denoising method which uses local adaptive algorithm based on dual-tree complex wavelet transform (DT-CWT) is introduced to extract weak failure information in gear, especially to extract impulse components. By taking into account the non-Gaussian probability distribution and the statistical dependencies among wavelet coefficients of some signals, and by taking the advantage of near shift-invariance of DT-CWT, the higher signal-to-noise ratio (SNR) than common wavelet denoising methods can be obtained. Experiments of extracting periodic impulses in gearbox vibration signals indicate that the method can extract incipient fault feature and hidden information from heavy noise, and it has an excellent effect on identifying weak feature signals in gearbox vibration signals.展开更多
Rotary machines are widely used in various applications. A reliable machinery fault detection technique is critically needed in industries to prevent the machinery system’s performance degradation, malfunction, or ev...Rotary machines are widely used in various applications. A reliable machinery fault detection technique is critically needed in industries to prevent the machinery system’s performance degradation, malfunction, or even catastrophic failures. The challenge for reliable fault diagnosis is related to the analysis of non-stationary features. In this paper, a wavelet spectrum (WS) technique is proposed to tackle the challenge of feature extraction from these non-stationary signatures;this work will focus on fault detection in rolling element bearings. The vibration signatures are first analyzed by a wavelet transform to demodulate representative features;the periodic features are then enhanced by cross-correlating the resulting wavelet coefficient functions over several contributive neighboring wavelet bands. The effectiveness of the proposed technique is examined by experimental tests corresponding to different bearing conditions. Test results show that the developed WS technique is an effective signal processing approach for non-stationary feature extraction and analysis, and it can be applied effectively for bearing fault detection.展开更多
The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on...The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on maximal overlap discrete wavelet packet transformation (MODWPT) is developed. By the simulation test for soil embedded pipes fault-detection, it is shown that the performance of newly proposed HFRT algorithms is more sensitive to early defects than the traditional HFRT methods based on the Hilbert transform.展开更多
This paper presents a wavelet-based technique for detection and classification of normal and abnormal conditions that occur on power distribution lines. The proposed technique depends on a sensitive fault detection pa...This paper presents a wavelet-based technique for detection and classification of normal and abnormal conditions that occur on power distribution lines. The proposed technique depends on a sensitive fault detection parameter (denoted DET) calculated from the wavelet multi-resolution decomposition of the three phase currents only. This parameter is fast and sensitive to any small changes in the current signal since it uses the square of the first and second details of the decomposed signals. The simulation results of this study clearly show that the proposed technique can be successfully used to detect and classify not only low-current faults that could not be detected by conventional overcurrent relays but also normal transients like load switching and inrush currents.展开更多
This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quick...This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quickly and effectively are paramount to increasing response time to events and unstable parameters. With the amount of data PMUs output, unstable parameters, tie line oscillations, and HIFs are often overlooked in the bulk of the data. This paper explores model-free techniques to attain stability information and determine events in real-time. When full system connectivity is unknown, many traditional methods requiring other bus measurements can be impossible or computationally extensive to apply. The traditional method of interest is analyzing the power flow Jacobian for singularities and system weak points, attained by applying singular value decomposition. This paper further develops upon the approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approximation (DDJEA), giving values to significant off-diagonal terms while establishing a generalized connectivity between correlated buses. Statistical linear models are applied over large data sets to prove significance to each term. Then the off diagonal terms are given time-varying weights to account for changes in topology or sensitivity to events using a reduced system model. The results of this novel method are compared to the present errors of the previous publication in order to quantify the degree of improvement that this novel method imposes. The effective bus eigenvalues are briefly compared to Prony analysis to check similarities. An additional application for biorthogonal wavelets is also introduced to detect event types, including the HIF, for PMU data.展开更多
针对水电机组振动信号故障特征提取难,提出一种融合小波变换(Wavelet Transform,WT)和奇异值分解(Singular Value Decomposition,SVD)相结合的故障特征提取方法。首先,通过小波阈值降噪消除强噪声对模型特征提取的干扰,再利用小波变换...针对水电机组振动信号故障特征提取难,提出一种融合小波变换(Wavelet Transform,WT)和奇异值分解(Singular Value Decomposition,SVD)相结合的故障特征提取方法。首先,通过小波阈值降噪消除强噪声对模型特征提取的干扰,再利用小波变换将降噪信号分解成不同频率的模态子序列,应用SVD理论提起子序列的SVD值作为特征,最终将特征输入RF模型中实现水电机组故障的快速识别与诊断。通过在公开数据集和真实机组案例中应用,验证了对水电机组故障诊断的高效性。展开更多
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.
文摘The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing.
基金This research was funded by Natural Science Foundation of Beijing,China(No.3182005)National Natural Science Foundation of China(No.51635001)National Natural Science Foundation of China(No.50235008).
文摘A gear fault detection analysis method based on Fractional Wavelet Transform(FRWT)and Back Propagation Neural Network(BPNN)is proposed.Taking the changing order as the variable,the optimal order of gear vibration signals is determined by discrete fractional Fourier transform.Under the optimal order,the fractional wavelet transform is applied to eliminate noise from gear vibration signals.In this way,useful components of vibration signals can be successfully separated from background noise.Then,a set of feature vectors obtained by calculating the characteristic parameters for the de-noised signals are used to characterize the gear vibration features.Finally,the feature vectors are divided into two groups,including training samples and testing samples,which are input into the BPNN for learning and classification.Experimental results showed that this gear fault detection analysis method could well maintain the useful signal components related to gear faults and effectively extract the weak fault feature.The accuracy rate reached 96.67%in the identification of the type of gear fault.
文摘Wavelet analysis theory is a new theory developed in recent years, it is a new timefrequency localization method. As its analyzing precision can be changed and focused to anydetail of the analyzed signal., it is very useful to study unstationary signals. In this paper wemainly study the wavelet theory a,of its application in control systems. Furthermore, we use it todetect the fault of an underwater vehicle 's direction angle, and attained excellent results from thesimulation.
文摘This paper introduces a multiresolution decomposition of signals based on their wavelet transform. The different behaviors of the wavelet transform between the signal and the noise are compared. An algorithm of singularity detection and processing in signals is proposed by the modulus maximum of the wavelet transform.
文摘This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characteristics of a signal both in the time and frequency domains, the occurring instants of abnormal status of a sensor in the output signal can be identified by the multi-scale representation of the signal. Once the instants are detected, the distribution differences of the signal energy on all decomposed wavelet scales of the signal before and after the instants are used to claim and classify the sensor faults.
文摘Fault diagnosis of rolling element bearings requires efficient signal processing techniques. For this purpose, the performances of envelope detection with fast Fourier transform (FFT) and continuous wavelet transform (CWT) of vibration signals produced from a bearing with defects on inner race and rolling element, have been examined at low signal to noise ratio. Both simulated and experimental signals from identical bearings have been considered for the purpose of analysis. The bearings have been modeled as spring-mass-dashpot systems and the simulated signals have been obtained considering transfer functions for the bearing systems subjected to impulsive loads due to the defects. Frequency B spline wavelets have been applied for CWT and a discussion on wavelet selection has been presented for better effectiveness. Results show that use of CWT with the proposed wavelets overcomes the short coming of FFT while processing a noisy vibration signals for defect detection of bearings.
基金financial supported by the Natural Science Foundation of Fujian,China(2021J01633).
文摘When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform(ST)and average singular entropy(ASE)is proposed to identify HIFs.First,a wavelet packet transform(WPT)was applied to extract the feature frequency band.Thereafter,the ST was investigated in each half cycle.Afterwards,the obtained time-frequency matrix was denoised by singular value decomposition(SVD),followed by the calculation of the ASE index.Finally,an appropriate threshold was selected to detect the HIFs.The advantages of this method are the ability of fine band division,adaptive time-frequency transformation,and quantitative expression of signal complexity.The performance of the proposed method was verified by simulated and field data,and further analysis revealed that it could still achieve good results under different conditions.
文摘To early detect symptoms of defective rolling element bearings, this paper introduces discrete wavelet packet transform (DWPT)-based sub-band analysis. The objective of this analysis is to explore the impacts of multiple sub-band signals by 4-level DWPTusing proper Daubechies mother wavelet on a 2.5-second acoustic emission signal. In particular, the DWPT-based sub-bandanalysis determines the most informative sub-band signal involving intrinsic information about bearing defects among theaforementioned multiple sub-band signals based on the ratio of spectral magnitudes at harmonics of the bearing's characteristicfrequency to those around the harmonics. This paper also verifies the efficacy of the DWPT-based sub-band analysis for seededbearing defects (i.e., a crack on the inner race, the outer race, or a roller).
基金Beijing Municipal Natural Science Foundation of China (No. 3062012).
文摘Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new signal-denoising method which uses local adaptive algorithm based on dual-tree complex wavelet transform (DT-CWT) is introduced to extract weak failure information in gear, especially to extract impulse components. By taking into account the non-Gaussian probability distribution and the statistical dependencies among wavelet coefficients of some signals, and by taking the advantage of near shift-invariance of DT-CWT, the higher signal-to-noise ratio (SNR) than common wavelet denoising methods can be obtained. Experiments of extracting periodic impulses in gearbox vibration signals indicate that the method can extract incipient fault feature and hidden information from heavy noise, and it has an excellent effect on identifying weak feature signals in gearbox vibration signals.
文摘Rotary machines are widely used in various applications. A reliable machinery fault detection technique is critically needed in industries to prevent the machinery system’s performance degradation, malfunction, or even catastrophic failures. The challenge for reliable fault diagnosis is related to the analysis of non-stationary features. In this paper, a wavelet spectrum (WS) technique is proposed to tackle the challenge of feature extraction from these non-stationary signatures;this work will focus on fault detection in rolling element bearings. The vibration signatures are first analyzed by a wavelet transform to demodulate representative features;the periodic features are then enhanced by cross-correlating the resulting wavelet coefficient functions over several contributive neighboring wavelet bands. The effectiveness of the proposed technique is examined by experimental tests corresponding to different bearing conditions. Test results show that the developed WS technique is an effective signal processing approach for non-stationary feature extraction and analysis, and it can be applied effectively for bearing fault detection.
文摘The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on maximal overlap discrete wavelet packet transformation (MODWPT) is developed. By the simulation test for soil embedded pipes fault-detection, it is shown that the performance of newly proposed HFRT algorithms is more sensitive to early defects than the traditional HFRT methods based on the Hilbert transform.
文摘This paper presents a wavelet-based technique for detection and classification of normal and abnormal conditions that occur on power distribution lines. The proposed technique depends on a sensitive fault detection parameter (denoted DET) calculated from the wavelet multi-resolution decomposition of the three phase currents only. This parameter is fast and sensitive to any small changes in the current signal since it uses the square of the first and second details of the decomposed signals. The simulation results of this study clearly show that the proposed technique can be successfully used to detect and classify not only low-current faults that could not be detected by conventional overcurrent relays but also normal transients like load switching and inrush currents.
文摘This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quickly and effectively are paramount to increasing response time to events and unstable parameters. With the amount of data PMUs output, unstable parameters, tie line oscillations, and HIFs are often overlooked in the bulk of the data. This paper explores model-free techniques to attain stability information and determine events in real-time. When full system connectivity is unknown, many traditional methods requiring other bus measurements can be impossible or computationally extensive to apply. The traditional method of interest is analyzing the power flow Jacobian for singularities and system weak points, attained by applying singular value decomposition. This paper further develops upon the approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approximation (DDJEA), giving values to significant off-diagonal terms while establishing a generalized connectivity between correlated buses. Statistical linear models are applied over large data sets to prove significance to each term. Then the off diagonal terms are given time-varying weights to account for changes in topology or sensitivity to events using a reduced system model. The results of this novel method are compared to the present errors of the previous publication in order to quantify the degree of improvement that this novel method imposes. The effective bus eigenvalues are briefly compared to Prony analysis to check similarities. An additional application for biorthogonal wavelets is also introduced to detect event types, including the HIF, for PMU data.
文摘针对水电机组振动信号故障特征提取难,提出一种融合小波变换(Wavelet Transform,WT)和奇异值分解(Singular Value Decomposition,SVD)相结合的故障特征提取方法。首先,通过小波阈值降噪消除强噪声对模型特征提取的干扰,再利用小波变换将降噪信号分解成不同频率的模态子序列,应用SVD理论提起子序列的SVD值作为特征,最终将特征输入RF模型中实现水电机组故障的快速识别与诊断。通过在公开数据集和真实机组案例中应用,验证了对水电机组故障诊断的高效性。