Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ...Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.展开更多
Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wa...Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extrac...Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her e...Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her experience and handbooks.However,this manual diagnostic method is imprecise because many spark ignition patterns are very similar.Therefore,a diagnosis needs many trials to identify the malfunctioning parts.Meanwhile the mechanic needs to disassemble and assemble the engine parts for verification.To tackle this problem,an intelligent diagnosis system was established based on ignition patterns.First,the captured patterns were normalized and compressed.Then wavelet packet transform(WPT) was employed to extract the representative features of the ignition patterns.Finally,a classification system was constructed by using multi-class support vector machines(SVM) and the extracted features.The classification system can intelligently classify the most likely engine fault so as to reduce the number of diagnosis trials.Experimental results show that SVM produces higher diagnosis accuracy than the traditional multilayer feedforward neural network.This is the first trial on the combination of WPT and SVM to analyze ignition patterns and diagnose automotive engines.展开更多
A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method ...A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method provides a finer analysis and better time-frequencylocalization capabilities than any other analysis methods. Both details and approximations are splitinto finer components and result in better-localized frequency ranges corresponding to each node ofa wavelet packet tree. For the punpose of feature extraction, a hard threshold is given and theenergy of the coefficients above the threshold is used, as a criterion for the selection of the bestvector. The feature extraction of a vibration signal is accomplished by computing thereconstruction signal and its spectrum. When applied to a rolling bear vibration signal featureextraction, the proposed method can lead to be very effective.展开更多
The wavelet packet transform is used for the damage detection of offshore platforms. When some damage occurs, the dynamic response parameters of the structure will shift subtly. However, in some cases, the dynamic par...The wavelet packet transform is used for the damage detection of offshore platforms. When some damage occurs, the dynamic response parameters of the structure will shift subtly. However, in some cases, the dynamic parameters, such as dynamic response, are not sensitive, and it is very difficult to predict the existence of damage. The present paper aims to describe how to find small damage by the use of wavelet packet transform. As the wavelet packet transform can be used to quickly find the singularity of the response signal on different scales, the acceleration signal of a damaged offshore platform in the time domain is transformed through the wavelet packet. Experimental results show that the Daubechies 4 wavelet transform can be used to detect damage.展开更多
This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select t...This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.展开更多
This paper presents an effective method for motion classification using the surface electromyographic (sEMG) signal collected from the forearm. Given the nonlinear and time-varying nature of EMG signal, the wavelet pa...This paper presents an effective method for motion classification using the surface electromyographic (sEMG) signal collected from the forearm. Given the nonlinear and time-varying nature of EMG signal, the wavelet packet transform (WPT) is introduced to extract time-frequency joint information. Then the multi-class classifier based on the least squares support vector machine (LS-SVM) is constructed and verified in the various motion classification tasks. The results of contrastive experiments show that different motions can be identified with high accuracy by the presented method. Furthermore, compared with other classifiers with different features, the performance indicates the potential of the SVM techniques combined with WPT in motion classification.展开更多
In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of th...In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of the Wavelet Packet Transform (WPT). The WPT is able to decompose an image into low frequency band and high frequency band in higher scale. It offers a more precise method for image analysis than Wavelet Transform (WT). Firstly, the proposed approach employs HIS (Hue, Intensity, Saturation) transform to obtain the intensity component of CBERS (China-Brazil Earth Resource Satellite) multi-spectral image. Then WPT transform is employed to decompose the intensity component and SPOT (Systeme Pour I'Observation de la Therre ) image into low frequency band and high frequency band in three levels. Next, two high frequency coefficients and low frequency coefficients of the images are combined by linear weighting strategies. Finally, the fused image is obtained with inverse WPT and inverse HIS. The results show the new approach can fuse details of input image successfully, and thereby can obtain a more satisfactory result than that of HM (Histogram Matched)-based fusion algorithm and WT-based fusion approach.展开更多
Modem and efficient methods focus on signal analysis and have drawn researchers' attention to it in recent years. These methods mainly include Continuous Wavelet and Wavelet Packet transforms. The main advantage of t...Modem and efficient methods focus on signal analysis and have drawn researchers' attention to it in recent years. These methods mainly include Continuous Wavelet and Wavelet Packet transforms. The main advantage of the application of these Wavelets is their capacity to analyze the signal position in different occasions and places. However, in sites with high frequencies its resolution becomes much more difficult. Wavelet packet transform is a more advanced form of continuous wavelets and can make a perfect level by level resolution for each signal. Although very few studies have been done in the field. In order to do this, in the present study, f^st there was an attempt to do a modal analysis on the structure by the ANSYS finite elements software, then using MATLAB, the wavelet was investigated through a continuous wavelet analysis. Finally the results were displayed in 2-D location-coefficient figures. In the second form, transient-dynamic analysis was done on the structure to find out the characteristics of the damage and the wavelet packet energy rate index was suggested. The results indicate that suggested index in the second form is both practical and applicable, and also this index is sensitive to the intensity of the damage.展开更多
This paper covers a novel method named wavelet packet transform based Elman recurrent neural network(WPTERNN) for the simultaneous kinetic determination of periodate and iodate. The wavelet packet representations of s...This paper covers a novel method named wavelet packet transform based Elman recurrent neural network(WPTERNN) for the simultaneous kinetic determination of periodate and iodate. The wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. The Elman recurrent network was applied to non-linear multivariate calibration. In this case, by means of optimization, the wavelet function, decomposition level and number of hidden nodes for WPTERNN method were selected as D4, 5 and 5 respectively. A program PWPTERNN was designed to perform multicomponent kinetic determination. The relative standard error of prediction(RSEP) for all the components with WPTERNN, Elman RNN and PLS were 3.23%, 11.8% and 10.9% respectively. The experimental results show that the method is better than the others.展开更多
We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex contin...We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase.展开更多
Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of a...Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.展开更多
Matrix expression of finite orthogonal wavelet transform of finite impulse response signal is more valuable for theoretical analysis and understanding. However, clear deduction for matrix expression has not been provi...Matrix expression of finite orthogonal wavelet transform of finite impulse response signal is more valuable for theoretical analysis and understanding. However, clear deduction for matrix expression has not been provided yet. In this paper, the formulation to generate the re-lated matrix is put forward and the theorem on the orthogonality of this matrix proved. This effort deploys a basis for more deeper and wider applications in chemical processes. *展开更多
In this paper, a concept of image grading transmission is put forward to enhance data rate and to improve the usage of subcarriers in orthogonal frequency division multiplexing (OFDM). The idea originates from the wav...In this paper, a concept of image grading transmission is put forward to enhance data rate and to improve the usage of subcarriers in orthogonal frequency division multiplexing (OFDM). The idea originates from the wavelet packets representative of an image in which information is graded in terms of different priorities. The graded image facilitates more efficient use of adaptive subcarriers and bits allocation. The results of simulation in typical mobile environment prove that the output signal noise ratio (SNR) of the graded image excels that of the ungraded image by 1—2 dB under the same channel condition.展开更多
Based on strain signals, a new time-domain methodology for detecting the beam local damage has been developed. The pseudo strain energy density (PSED) is defined and used to build two major damage indexes, the avera...Based on strain signals, a new time-domain methodology for detecting the beam local damage has been developed. The pseudo strain energy density (PSED) is defined and used to build two major damage indexes, the average pseudo strain energy density (APSED) and the average pseudo strain energy density rate (APSEDR). Probability and mathematical statistics are utilized to derive a standardized damage index. Furthermore, by applying the analytic relation between the strain energy release rate and the stress intensity factor, an analytic solution of crack depth is derived. For the dynamic strain signals, the wavelet packet transform is used to pre-process measured data. Finally, a numerical simulation indicates that this method can effectively identify the damage location and its absolute severity.展开更多
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
基金National Key Research and Development Program of China under Grant No.2023YFE0102900National Natural Science Foundation of China under Grant Nos.52378506 and 52208164。
文摘Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.
文摘Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
基金supported financially by FundamentalResearch Program of Shanxi Province(No.202103021223056).
文摘Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金supported by University of Macao Research Grant,China (Grant No. RG057/08-09S/VCM/FST, Grant No. UL011/09-Y1/ EME/ WPK01/FST)
文摘Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her experience and handbooks.However,this manual diagnostic method is imprecise because many spark ignition patterns are very similar.Therefore,a diagnosis needs many trials to identify the malfunctioning parts.Meanwhile the mechanic needs to disassemble and assemble the engine parts for verification.To tackle this problem,an intelligent diagnosis system was established based on ignition patterns.First,the captured patterns were normalized and compressed.Then wavelet packet transform(WPT) was employed to extract the representative features of the ignition patterns.Finally,a classification system was constructed by using multi-class support vector machines(SVM) and the extracted features.The classification system can intelligently classify the most likely engine fault so as to reduce the number of diagnosis trials.Experimental results show that SVM produces higher diagnosis accuracy than the traditional multilayer feedforward neural network.This is the first trial on the combination of WPT and SVM to analyze ignition patterns and diagnose automotive engines.
文摘A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method provides a finer analysis and better time-frequencylocalization capabilities than any other analysis methods. Both details and approximations are splitinto finer components and result in better-localized frequency ranges corresponding to each node ofa wavelet packet tree. For the punpose of feature extraction, a hard threshold is given and theenergy of the coefficients above the threshold is used, as a criterion for the selection of the bestvector. The feature extraction of a vibration signal is accomplished by computing thereconstruction signal and its spectrum. When applied to a rolling bear vibration signal featureextraction, the proposed method can lead to be very effective.
基金This workis financially supported bythe National Natural Science Foundation of China (Grant No.50379025) andthe Teaching and Research Award Program(2002) for Outstanding Young Teachers in Higher Education Institutionsof the Ministry of Education,P. R.China
文摘The wavelet packet transform is used for the damage detection of offshore platforms. When some damage occurs, the dynamic response parameters of the structure will shift subtly. However, in some cases, the dynamic parameters, such as dynamic response, are not sensitive, and it is very difficult to predict the existence of damage. The present paper aims to describe how to find small damage by the use of wavelet packet transform. As the wavelet packet transform can be used to quickly find the singularity of the response signal on different scales, the acceleration signal of a damaged offshore platform in the time domain is transformed through the wavelet packet. Experimental results show that the Daubechies 4 wavelet transform can be used to detect damage.
文摘This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.
基金Supported by the National Basic Research Program("973"Program, No2005CB724303 )
文摘This paper presents an effective method for motion classification using the surface electromyographic (sEMG) signal collected from the forearm. Given the nonlinear and time-varying nature of EMG signal, the wavelet packet transform (WPT) is introduced to extract time-frequency joint information. Then the multi-class classifier based on the least squares support vector machine (LS-SVM) is constructed and verified in the various motion classification tasks. The results of contrastive experiments show that different motions can be identified with high accuracy by the presented method. Furthermore, compared with other classifiers with different features, the performance indicates the potential of the SVM techniques combined with WPT in motion classification.
文摘In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of the Wavelet Packet Transform (WPT). The WPT is able to decompose an image into low frequency band and high frequency band in higher scale. It offers a more precise method for image analysis than Wavelet Transform (WT). Firstly, the proposed approach employs HIS (Hue, Intensity, Saturation) transform to obtain the intensity component of CBERS (China-Brazil Earth Resource Satellite) multi-spectral image. Then WPT transform is employed to decompose the intensity component and SPOT (Systeme Pour I'Observation de la Therre ) image into low frequency band and high frequency band in three levels. Next, two high frequency coefficients and low frequency coefficients of the images are combined by linear weighting strategies. Finally, the fused image is obtained with inverse WPT and inverse HIS. The results show the new approach can fuse details of input image successfully, and thereby can obtain a more satisfactory result than that of HM (Histogram Matched)-based fusion algorithm and WT-based fusion approach.
文摘Modem and efficient methods focus on signal analysis and have drawn researchers' attention to it in recent years. These methods mainly include Continuous Wavelet and Wavelet Packet transforms. The main advantage of the application of these Wavelets is their capacity to analyze the signal position in different occasions and places. However, in sites with high frequencies its resolution becomes much more difficult. Wavelet packet transform is a more advanced form of continuous wavelets and can make a perfect level by level resolution for each signal. Although very few studies have been done in the field. In order to do this, in the present study, f^st there was an attempt to do a modal analysis on the structure by the ANSYS finite elements software, then using MATLAB, the wavelet was investigated through a continuous wavelet analysis. Finally the results were displayed in 2-D location-coefficient figures. In the second form, transient-dynamic analysis was done on the structure to find out the characteristics of the damage and the wavelet packet energy rate index was suggested. The results indicate that suggested index in the second form is both practical and applicable, and also this index is sensitive to the intensity of the damage.
基金National Natural Science Foundation of China(No.2 996 5 0 0 1) and Natural Science Foundation of InnerMongolia(No.2 0 0 2 2 0 80 2 0 115 )
文摘This paper covers a novel method named wavelet packet transform based Elman recurrent neural network(WPTERNN) for the simultaneous kinetic determination of periodate and iodate. The wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. The Elman recurrent network was applied to non-linear multivariate calibration. In this case, by means of optimization, the wavelet function, decomposition level and number of hidden nodes for WPTERNN method were selected as D4, 5 and 5 respectively. A program PWPTERNN was designed to perform multicomponent kinetic determination. The relative standard error of prediction(RSEP) for all the components with WPTERNN, Elman RNN and PLS were 3.23%, 11.8% and 10.9% respectively. The experimental results show that the method is better than the others.
基金CulturalHeritage Protection Program of State Administration of CulturalHeritage (200001).
文摘We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase.
基金National Natural Science Foundation of China(No.51303131)
文摘Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.
文摘Matrix expression of finite orthogonal wavelet transform of finite impulse response signal is more valuable for theoretical analysis and understanding. However, clear deduction for matrix expression has not been provided yet. In this paper, the formulation to generate the re-lated matrix is put forward and the theorem on the orthogonality of this matrix proved. This effort deploys a basis for more deeper and wider applications in chemical processes. *
文摘In this paper, a concept of image grading transmission is put forward to enhance data rate and to improve the usage of subcarriers in orthogonal frequency division multiplexing (OFDM). The idea originates from the wavelet packets representative of an image in which information is graded in terms of different priorities. The graded image facilitates more efficient use of adaptive subcarriers and bits allocation. The results of simulation in typical mobile environment prove that the output signal noise ratio (SNR) of the graded image excels that of the ungraded image by 1—2 dB under the same channel condition.
基金The National Natural Science Foundation of China (Nos.50778077 and 50608036)
文摘Based on strain signals, a new time-domain methodology for detecting the beam local damage has been developed. The pseudo strain energy density (PSED) is defined and used to build two major damage indexes, the average pseudo strain energy density (APSED) and the average pseudo strain energy density rate (APSEDR). Probability and mathematical statistics are utilized to derive a standardized damage index. Furthermore, by applying the analytic relation between the strain energy release rate and the stress intensity factor, an analytic solution of crack depth is derived. For the dynamic strain signals, the wavelet packet transform is used to pre-process measured data. Finally, a numerical simulation indicates that this method can effectively identify the damage location and its absolute severity.