期刊文献+
共找到461篇文章
< 1 2 24 >
每页显示 20 50 100
WAVELET-BASED ESTIMATORS OF MEAN REGRESSION FUNCTION WITH LONG MEMORY DATA
1
作者 李林元 肖益民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第7期901-910,共10页
This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying... This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent. 展开更多
关键词 nonlinear wavelet-based estimator nonparametric regression long-range dependence
下载PDF
WAVELET-BASED FINE GRANULARITY SCALABLE VIDEO CODING
2
作者 Zhang Jiangshan Zhu Guangxi (Dept. of Electronics & Info. Eng., Huazhong University of Science & Technology, Wulian 430074) 《Journal of Electronics(China)》 2003年第1期38-44,共7页
This letter proposes an efficient wavelet-based Fine Granularity Scalable (FGS)coding scheme, where the base layer is encoded with a newly designed wavelet-based coder, and the enhancement layer is encoded with Progre... This letter proposes an efficient wavelet-based Fine Granularity Scalable (FGS)coding scheme, where the base layer is encoded with a newly designed wavelet-based coder, and the enhancement layer is encoded with Progressive Fine Granularity Scalable (PFGS) coding.This algorithm involves multi-frame motion compensation, rate-distortion optimizing strategy with Lagrangian cost function and context-based adaptive arithmetic coding. In order to improve efficiency of the enhancement layer coding, an improved motion estimation scheme that uses both information from the base layer and the enhancement layer is also proposed in this letter. The wavelet-based coder significantly improves the coding efficiency of the base layer compared with MPEG-4 ASP (Advanced Simple Profile) and H.26L TML9. The PFGS coding is a significant improvement over MPEG-4 FGS coding at the enhancement layer. Experiments show that single layer coding efficiency gain of the proposed scheme is about 2.0-3.0dB and 0.3-1.0dB higher than that of MPEG-4 ASP and H.26L TML9, respectively. The overall coding efficiency gain of the proposed scheme is about 4.0-5.0dB higher than that of MPEG-4 FGS. 展开更多
关键词 wavelet-based coding Scalable coding FGS coding H.26L MPEG-4
下载PDF
GEAR CRACK EARLY DIAGNOSIS USING BISPECTRUM DIAGONAL SLICE 被引量:4
3
作者 Li WeihuaZhang GuicaiShi TielinYang ShuziSchool of Mechanical Scienceand Engineering,Huazhong University of Scienceand Technology,Wuhan 430074, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期193-196,共4页
A study of bispectral analysis in gearbox condition monitoring is presented.The theory of bispectrum and quadratic phase coupling (QPC) is first introduced, and then equationsfor computing bispectrum slices are obtain... A study of bispectral analysis in gearbox condition monitoring is presented.The theory of bispectrum and quadratic phase coupling (QPC) is first introduced, and then equationsfor computing bispectrum slices are obtained. To meet the needs of online monitoring, a simplifiedmethod of computing bispectrum diagonal slice is adopted. Industrial gearbox vibration signalsmeasured from normal and tooth cracked conditions are analyzed using the above method. Experimentsresults indicate that bispectrum can effectively suppress the additive Gaussian noise andchracterize the QPC phenomenon. It is also shown that the 1-D bispectrum diagonal slice can capturethe non-Gaussian and nonlinear feature of gearbox vibration when crack occurred, hence, this methodcan be employed to gearbox real time monitoring and early diagnosis. 展开更多
关键词 condition monitoring gear crack early diagnosis quadratic phase coupling bispectrum diagonal slice
下载PDF
Fault Feature Extraction of Diesel Engine Based on Bispectrum Image Fractal Dimension 被引量:1
4
作者 Jian Zhang Chang-Wen Liu +2 位作者 Feng-Rong Bi Xiao-Bo Bi Xiao Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期216-226,共11页
Fault feature extraction has a positive effect on accurate diagnosis of diesel engine. Currently, studies of fault feature extraction have focused on the time domain or the frequency domain of signals. However, early ... Fault feature extraction has a positive effect on accurate diagnosis of diesel engine. Currently, studies of fault feature extraction have focused on the time domain or the frequency domain of signals. However, early fault signals are mostly weak energy signals, and time domain or frequency domain features will be overwhelmed by strong back?ground noise. In order consistent features to be extracted that accurately represent the state of the engine, bispectrum estimation is used to analyze the nonlinearity, non?Gaussianity and quadratic phase coupling(QPC) information of the engine vibration signals under different conditions. Digital image processing and fractal theory is used to extract the fractal features of the bispectrum pictures. The outcomes demonstrate that the diesel engine vibration signal bispectrum under different working conditions shows an obvious differences and the most complicated bispectrum is in the normal state. The fractal dimension of various invalid signs is novel and diverse fractal parameters were utilized to separate and characterize them. The value of the fractal dimension is consistent with the non?Gaussian intensity of the signal, so it can be used as an eigenvalue of fault diagnosis, and also be used as a non?Gaussian signal strength indicator. Consequently, a symptomatic approach in view of the hypothetical outcome is inferred and checked by the examination of vibration signals from the diesel motor. The proposed research provides the basis for on?line monitoring and diagnosis of valve train faults. 展开更多
关键词 Engine fault diagnosis bispectrum image processing FRACTAL Signal processing
下载PDF
A Study of Motor Bearing Fault Diagnosis using Modulation Signal Bispectrum Analysis of Motor Current Signals 被引量:3
5
作者 Ahmed Alwodai Tie Wang +3 位作者 Zhi Chen Fengshou Gu Robert Cattley Andrew Ball 《Journal of Signal and Information Processing》 2013年第3期72-79,共8页
Failure of induction motors are a large concern due to its influence over industrial production. Motor current signature analysis (MCSA) is common practice in industry to find motor faults. This paper presents a new a... Failure of induction motors are a large concern due to its influence over industrial production. Motor current signature analysis (MCSA) is common practice in industry to find motor faults. This paper presents a new approach to detection and diagnosis of motor bearing faults based on induction motor stator current analysis. Tests were performed with three bearing conditions: baseline, outer race fault and inner race fault. Because the signals associated with faults produce small modulations to supply component and high nose levels, a modulation signal bispectrum (MSB) is used in this paper to detect and diagnose different motor bearing defects. The results show that bearing faults can induced a detestable amplitude increases at its characteristic frequencies. MSB peaks show a clear difference at these frequencies whereas conventional power spectrum provides change evidences only at some of the frequencies. This shows that MSB has a better and reliable performance in extract small changes from the faulty bearing for fault detection and diagnosis. In addition, the study also show that current signals from motors with variable frequency drive controller have too much noise and it is unlikely to discriminate the small bearing fault component. 展开更多
关键词 INDUCTION MOTOR MOTOR Current SIGNATURE Power Spectrum bispectrum MOTOR BEARING
下载PDF
Fault Detection and Diagnosis of a Gearbox in Marine Propulsion Systems Using Bispectrum Analysis and Artificial Neural Networks 被引量:3
6
作者 李志雄 严新平 +2 位作者 袁成清 赵江滨 彭中笑 《Journal of Marine Science and Application》 2011年第1期17-24,共8页
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com... A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance. 展开更多
关键词 marine propulsion system fault diagnosis vibration analysis bispectrum artificial neural networks Article
下载PDF
UWB radar target recognition based on time-domain bispectrum
7
作者 Liu Donghong Zhang Yongshun +1 位作者 Chen Zhijie Cheng Junbin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期274-278,共5页
Complex targets are irradiated by UWB radar, not only the mirror scattering echoes but also the multiscattering interacting echoes are included in target echoes. These two echoes can not be distinguished by classical ... Complex targets are irradiated by UWB radar, not only the mirror scattering echoes but also the multiscattering interacting echoes are included in target echoes. These two echoes can not be distinguished by classical frequency spectrum and power spectrurm. Time-domain bispectrum features of UWB radar signals that mingled with noise are analyzed, then processing this kind of signal using the method of time-domain bispectrum is experimented. At last, some UW-B radar returns with different signal noise ratio are simulated using the method of time-domain bispectrum Theoretical analysis and the results of simulation show that the method of extraction partial features of UWB radar targets based on time-domain bispectrum is good, and target classification and recognition can be implemented using those features. 展开更多
关键词 UWB Radar target recognition bispectrum higher-order spectra.
下载PDF
Bispectrum Analysis in Fault Diagnosis of Gears
8
作者 熊良才 史铁林 杨叔子 《Journal of Modern Transportation》 2001年第2期147-151,共5页
The application ofbispectrum analysis in fault diagnosis o f gears is studied in this paper. Bispectrum analysis is capable of removing Gau ssian or symmetric non-Gaussian noise and providing more information than pow... The application ofbispectrum analysis in fault diagnosis o f gears is studied in this paper. Bispectrum analysis is capable of removing Gau ssian or symmetric non-Gaussian noise and providing more information than power spectrum analysis.The results of the research show that normal gear sig nals, cracked gear signals and broken gear signals can be easily distinguished b y using bispectrumas the signal features. The bispectrum diagonal slice B_x(ω_1,ω_2) can be used to identifythe gear condition automatically. 展开更多
关键词 GEAR fault diagnosis bispectrum analysis bispec trum diagonal slices
下载PDF
Identification of Noisy Utterance Speech Signal using GA-Based Optimized 2D-MFCC Method and a Bispectrum Analysis
9
作者 Benyamin Kusumoputro Agus Buono Li Na 《Journal of Software Engineering and Applications》 2012年第12期193-199,共7页
One-dimensional Mel-Frequency Cepstrum Coefficients (1D-MFCC) in conjunction with a power spectrum analysis method is usually used as a feature extraction in a speaker identification system. However, as this one dimen... One-dimensional Mel-Frequency Cepstrum Coefficients (1D-MFCC) in conjunction with a power spectrum analysis method is usually used as a feature extraction in a speaker identification system. However, as this one dimensional feature extraction subsystem shows low recognition rate for identifying an utterance speech signal under harsh noise conditions, we have developed a speaker identification system based on two-dimensional Bispectrum data that was theoretically more robust to the addition of Gaussian noise. As the processing sequence of ID-MFCC method could not be directly used for processing the two-dimensional Bispectrum data, in this paper we proposed a 2D-MFCC method as an extension of the 1D-MFCC method and the optimization of the 2D filter design using Genetic Algorithms. By using the 2D-MFCC method with the Bispectrum analysis method as the feature extraction technique, we then used Hidden Markov Model as the pattern classifier. In this paper, we have experimentally shows our developed methods for identifying an utterance speech signal buried with various levels of noise. Experimental result shows that the 2D-MFCC method without GA optimization has a comparable high recognition rate with that of 1D-MFCC method for utterance signal without noise addition. However, when the utterance signal is buried with Gaussian noises, the developed 2D-MFCC shows higher recognition capability, especially, when the 2D-MFCC optimized by Genetics Algorithms is utilized. 展开更多
关键词 2D Mel-Frequency CEPSTRUM COEFFICIENTS bispectrum Hidden Markov Model GENETICS Algorithms
下载PDF
Research on Feature Extraction Method for Low-Speed Reciprocating Bearings Based on Segmented Short Signal Modulation Signal Bispectrum Slicing
10
作者 Hao Zhang 《Open Journal of Applied Sciences》 2023年第12期2306-2319,共14页
Bearing condition monitoring and fault diagnosis (CMFD) can investigate bearing faults in the early stages, preventing the subsequent impacts of machine bearing failures effectively. CMFD for low-speed, non-continuous... Bearing condition monitoring and fault diagnosis (CMFD) can investigate bearing faults in the early stages, preventing the subsequent impacts of machine bearing failures effectively. CMFD for low-speed, non-continuous operation bearings, such as yaw bearings and pitch bearings in wind turbines, and rotating support bearings in space launch towers, presents more challenges compared to continuous rolling bearings. Firstly, these bearings have very slow speeds, resulting in weak collected fault signals that are heavily masked by severe noise interference. Secondly, their limited rotational angles during operation lead to a restricted number of fault signals. Lastly, the interference from deceleration and direction-changing impact signals significantly affects fault impact signals. To address these challenges, this paper proposes a method for extracting fault features in low-speed reciprocating bearings based on short signal segmentation and modulation signal bispectrum (MSB) slicing. This method initially separates short signals corresponding to individual cycles from the vibration signals based on encoder signals. Subsequently, MSB analysis is performed on each short signal to generate MSB carrier-slice spectra. The optimal carrier frequency and its corresponding modulation signal slice spectrum are determined based on the carrier-slice spectra. Finally, the MSB modulation signal slice spectra of the short signal set are averaged to obtain the overall average feature of the sliced spectra. 展开更多
关键词 Fault Diagnosis The Modulation Signal bispectrum Short Signal Low-Speed Reciprocating Bearings Slewing Bearing
下载PDF
傅里叶分解和调制信号双谱的滚动轴承故障诊断
11
作者 张超 张辉 田帅 《机械设计与制造》 北大核心 2024年第3期43-47,共5页
在噪声干扰较强的环境下,为了克服傅里叶分解方法(Fourier Decomposition Method,FDM)在分析调制信号及单独使用调制信号双谱(Modulated Signal Bispectrum,MSB)在分析非平稳信号方面的不足,提出了一种FDM和MSB相结合的滚动轴承故障诊... 在噪声干扰较强的环境下,为了克服傅里叶分解方法(Fourier Decomposition Method,FDM)在分析调制信号及单独使用调制信号双谱(Modulated Signal Bispectrum,MSB)在分析非平稳信号方面的不足,提出了一种FDM和MSB相结合的滚动轴承故障诊断方法。首先,使用FDM按照高频到低频的方式搜寻傅里叶固有模态函数分量(Fourier Intrinsic band Functions,FIBFs);以加权峭度指标作为评判标准,对信号进行重构,确保得到最佳的信号;然后对新的信号利用MSB分析方法进行解调处理,最终通过复合切片谱实现故障特征频率的提取。最后,通过上述方法对模拟信号和滚动轴承外圈故障信号进行分析,其研究结果表明:该方法能够有效地提取故障特征频率,并且与常规双谱进行对比,验证所提方法的优越性。 展开更多
关键词 傅里叶分解方法 加权峭度指标 调制信号双谱 故障诊断 滚动轴承
下载PDF
一种通信辐射源正交调制细微特征提取和识别方法
12
作者 曹家昆 刘高辉 +1 位作者 余宁梅 韩晨飞 《电波科学学报》 CSCD 北大核心 2024年第6期1019-1026,共8页
针对Transformer网络在通信辐射源识别中局部细微特征不敏感和内存容量需求大的问题,提出了一种基于局部双谱和Longformer网络的通信辐射源正交调制细微特征提取和识别方法。首先分析了正交调制器的失配特性,建立了正交调制器输出通信... 针对Transformer网络在通信辐射源识别中局部细微特征不敏感和内存容量需求大的问题,提出了一种基于局部双谱和Longformer网络的通信辐射源正交调制细微特征提取和识别方法。首先分析了正交调制器的失配特性,建立了正交调制器输出通信信号的镜频干扰数学模型,并推导了正交分解和符号同步分段后的通信辐射源信号的局部离散双谱表示式;然后分析了Longformer网络中基于位置编码的局部自注意力与全局自注意力结合的稀疏自注意力机制,给出了基于Longformer网络和softmax分类器的正交调制细微特征识别分类框架;最后对4台同类型正交频分复用(orthogonal frequency division multiplex,OFDM)辐射源正交调制细微特征的分类识别进行了计算机仿真,分析了该方法的识别性能、抗噪声性和网络复杂度。仿真结果表明:Longformer网络比Transformer网络和径向基函数(radial basis function,RBF)识别效果更好,准确率达到了90%以上。 展开更多
关键词 个体识别 正交调制器 双谱 特征提取 Longformer网络
下载PDF
基于增强积分双谱的轨道交通辐射源识别方法
13
作者 刘海川 张可欣 +1 位作者 惠鏸 文璐 《城市轨道交通研究》 北大核心 2024年第1期17-21,49,共6页
[目的]城市轨道交通无线通信系统中存在大量外部干扰信号,对行车安全构成重大隐患。针对辐射源射频特征易受噪声与干扰影响,导致识别准确率低的问题,须提出一种基于增强对角积分双谱的通信辐射源个体识别方法,为轨道交通无线通信系统安... [目的]城市轨道交通无线通信系统中存在大量外部干扰信号,对行车安全构成重大隐患。针对辐射源射频特征易受噪声与干扰影响,导致识别准确率低的问题,须提出一种基于增强对角积分双谱的通信辐射源个体识别方法,为轨道交通无线通信系统安全保障提供有效新途径。[方法]分析了对角相关局部积分双谱(DCLIB)的数据处理过程及原理,阐述了双谱变换的计算、增强对角积分双谱的计算、自适应双谱积分区间的划分,以及基于残差网络的辐射源识别方法。基于实际Wi-Fi(无线保真)设备进行仿真试验,对DCLIB方法和其他辐射源识别方法的识别效果进行分析对比。[结果及结论]DCLIB方法先估计通信辐射源信号的双谱,并利用次对角线各平行线的自相关特性形成新的谱信息以增强信号的细微特征;然后依据谱信号强度自适应选取合理的谱信号积分区间,在降低噪声影响的同时降低算法的计算复杂度,从而获得增强的对角积分双谱;进而将所提DCLIB信号作为辐射源的射频指纹特征,采用深度残差网络实现辐射源个体识别。基于实际Wi-Fi设备的仿真识别试验结果表明,DCLIB方法的识别准确率最优,并具有良好的抗噪声性能。 展开更多
关键词 城市轨道交通 辐射源识别 射频指纹 积分双谱
下载PDF
低速往复运转轴承故障的调制信号双谱切片总体平均特征提取
14
作者 张浩 胡雷 +1 位作者 徐元栋 胡茑庆 《机械传动》 北大核心 2024年第8期169-176,共8页
风电机组的偏航轴承和变桨轴承、航天发射塔架的回转支承轴承、起重机和挖掘机的转盘轴承等,都具有低速往复运转的特点。低速往复运转轴承的故障诊断极具挑战:低速工况下损伤接触的冲击力小,损伤冲击信号弱;减速换向冲击信号对故障冲击... 风电机组的偏航轴承和变桨轴承、航天发射塔架的回转支承轴承、起重机和挖掘机的转盘轴承等,都具有低速往复运转的特点。低速往复运转轴承的故障诊断极具挑战:低速工况下损伤接触的冲击力小,损伤冲击信号弱;减速换向冲击信号对故障冲击信号的干扰大;覆盖多个往复运转行程的长信号不具有周期性,等等。为了解决上述问题,提出一种基于调制信号双谱(Modulation Signal Bispectrum,MSB)切片总体平均的低速往复运转轴承故障诊断方法。首先,利用转速跟踪过零点对振动信号进行信号重采样处理,并依据编码器信号从重采样信号中分离出单个行程的短信号集合;然后,对每一个短信号进行MSB分析,生成MSB的载波切片谱,根据载波切片谱寻找最优载波频率及其对应的调制信号切片谱;最后,对短信号集合的MSB调制信号切片谱进行总体平均,生成切片谱总体平均特征。故障试验数据验证结果表明,MSB切片总体平均特征能够有效诊断低速往复运转轴承的故障。 展开更多
关键词 故障诊断 调制信号双谱 短信号 低速往复运转轴承 变桨轴承
下载PDF
全相位FFT算法高精度谐波测量方法
15
作者 李思超 艾学忠 徐艳玲 《中国测试》 CAS 北大核心 2024年第6期56-61,130,共7页
针对电力系统精确测量谐波信号频谱特性这一技术问题,该文提出一种基于全相位FFT算法的高精度谐波测量方法。通过低漂移信号转换电路和程控滤波器对被测信号进行调理,再经高精度A/D转换器变换成数字量传至MCU进行全相位FFT变换,选择离... 针对电力系统精确测量谐波信号频谱特性这一技术问题,该文提出一种基于全相位FFT算法的高精度谐波测量方法。通过低漂移信号转换电路和程控滤波器对被测信号进行调理,再经高精度A/D转换器变换成数字量传至MCU进行全相位FFT变换,选择离散频谱中幅值最大的两根谱线进行校正得到信号精确测量结果。利用LTspice电路与Matlab算法协同仿真,结果表明:在输入信号为理想谐波、复杂谐波与间谐波、叠加白噪声信号的基波情况下,所提出的方法均可实现对信号频率和幅值的准确测量。在与传统FFT双谱线校正和加窗FFT双谱线校正相比,该文提出的测量方法精度更高、抗噪性更好,频谱泄漏抑制能力更强,适用于对电力信号的高精度测量。 展开更多
关键词 谐波分析 全相位FFT 双谱线校正 程控滤波
下载PDF
基于积分双谱的通信辐射源个体识别方法
16
作者 董春蕾 刘静 李靖超 《上海电机学院学报》 2024年第4期224-229,共6页
随着网络中无线设备制造工艺的提高,不同设备的指纹差别更加细微,且复杂环境中辐射源的射频指纹易受噪声与干扰的影响,进一步给辐射源个体识别增加了难度。如何提取更精细化的能够表征设备本质特征的射频指纹成为一个难点。针对该问题,... 随着网络中无线设备制造工艺的提高,不同设备的指纹差别更加细微,且复杂环境中辐射源的射频指纹易受噪声与干扰的影响,进一步给辐射源个体识别增加了难度。如何提取更精细化的能够表征设备本质特征的射频指纹成为一个难点。针对该问题,提出了一种基于轴向积分双谱和矩形积分双谱指纹特征与融合分类器的通信辐射源个体识别方法。通过对识别同厂家同型号同批次的8个无线数传电台E90-DTU设备的实验测试,发现该方法在视距场景、视距场景与非视距场景的混合场景中都表现出良好的识别准确率。结果表明:基于积分双谱指纹特征的通信辐射源个体识别方法在不同场景下都具有较高的识别精度。该方法为解决通信辐射源个体识别问题提供了有效的解决方案,并具有广泛的应用前景。 展开更多
关键词 积分双谱 分类器设计 射频指纹 辐射源识别
下载PDF
基于双谱三维向量的雷达辐射源个体识别
17
作者 张佛生 张文旭 富云宵 《制导与引信》 2024年第3期8-14,共7页
基于相位噪声造成的辐射源个体差异,提出了一种新的雷达辐射源个体识别算法。该算法以由双谱熵、双谱能量熵以及双谱主成分均值所组成的三维向量为特征向量,以K-均值(K-means)算法为分类器,完成了雷达辐射源个体识别。相比于现在比较主... 基于相位噪声造成的辐射源个体差异,提出了一种新的雷达辐射源个体识别算法。该算法以由双谱熵、双谱能量熵以及双谱主成分均值所组成的三维向量为特征向量,以K-均值(K-means)算法为分类器,完成了雷达辐射源个体识别。相比于现在比较主流的使用深度学习模型作为分类器的辐射源个体识别算法,该算法无需繁琐的模型训练步骤也能取得较好的识别效果。仿真结果表明,在信噪比为0 dB时,该算法依然能确保80%的识别正确率,算法性能优越。 展开更多
关键词 雷达辐射源个体识别 相位噪声 双谱 K-均值
下载PDF
基于Res2Net-ECA的雷达辐射源个体识别
18
作者 安林 张文旭 孙富礼 《制导与引信》 2024年第4期14-19,38,共7页
针对雷达辐射源个体识别过程中存在的模型泛化、特征表征不足和低信噪比信号识别难度大等问题,提出了一种基于高效通道注意力多尺度残差神经网络(Res2Net-ECA)的雷达辐射源个体识别方法。该方法将高效通道注意力(effective channel atte... 针对雷达辐射源个体识别过程中存在的模型泛化、特征表征不足和低信噪比信号识别难度大等问题,提出了一种基于高效通道注意力多尺度残差神经网络(Res2Net-ECA)的雷达辐射源个体识别方法。该方法将高效通道注意力(effective channel attention,ECA)和多尺度残差神经网络(multi-scale residual neural network,Res2Net)相结合,首先对信号进行双谱变换,并利用围线积分对数据进行降维,以降低后续计算的复杂度。然后,利用Res2Net提取数据的多尺度特征,确保数据特征被有效挖掘。最后,引入注意力机制,调整特征通道的权重以突出重要特征,从而进一步提高识别准确率。实验结果表明,该方法能够在不同的信噪比条件下保持较高的识别准确率,具有广阔的应用前景和很大的开发潜力。 展开更多
关键词 深度学习 雷达辐射源个体识别 注意力机制 双谱 多尺度特征
下载PDF
基于轴向积分双谱的假目标干扰特征提取与识别方法
19
作者 胡建波 朱瑞伟 +1 位作者 孙富礼 刘云涛 《制导与引信》 2024年第3期15-20,共6页
针对间歇采样转发式干扰识别需求,提出了一种基于轴向积分双谱的假目标干扰特征提取和识别方法。该方法分为特征提取与干扰识别两个方面,首先对干扰和目标信号进行积分双谱特征提取,然后利用神经网络对特征进行分类,实现对假目标干扰的... 针对间歇采样转发式干扰识别需求,提出了一种基于轴向积分双谱的假目标干扰特征提取和识别方法。该方法分为特征提取与干扰识别两个方面,首先对干扰和目标信号进行积分双谱特征提取,然后利用神经网络对特征进行分类,实现对假目标干扰的有效识别。仿真结果表明,采用该方法提取的目标信号和干扰信号特征差异明显,有利于提升后续的识别效果。 展开更多
关键词 间歇采样转发式干扰 积分双谱 特征提取 干扰识别
下载PDF
矢双谱分析及其在机械故障诊断中的应用 被引量:20
20
作者 李凌均 韩捷 +2 位作者 李朋勇 郝伟 陈磊 《机械工程学报》 EI CAS CSCD 北大核心 2011年第17期50-54,共5页
双谱分析由于可以有效提取信号中的非线性特征被广泛应用于转子故障诊断。但常规双谱分析是以单通道信号为研究对象,不能全面地反映转子系统的非线性特征,存在着信息遗漏的问题,而且由同一截面的两个通道信号得出的分析结论会不一致。... 双谱分析由于可以有效提取信号中的非线性特征被广泛应用于转子故障诊断。但常规双谱分析是以单通道信号为研究对象,不能全面地反映转子系统的非线性特征,存在着信息遗漏的问题,而且由同一截面的两个通道信号得出的分析结论会不一致。为解决这个问题,以全矢谱分析方法为基础提出矢双谱信号分析的新方法。矢双谱是融合了同一截面上双通道信号的幅值信息而保留了各自的相位信息的全矢双谱分析方法,能够真实地反映转子运转所包含的各种信息,且能满足分析结论的一致性要求。给出矢双谱的定义与算法,通过仿真和齿轮箱故障试验,研究结果表明,该方法能够更加全面地反映信号中所包含的非线性特征信息,分析结论具有一致性和可信性,从而提高智能故障诊断的准确性。 展开更多
关键词 双谱 全矢谱 矢双谱 故障诊断 信息融合
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部