针对三相串联故障电弧的研究大多只是提供一种能够识别出故障电弧的方法,没有考虑用于工业实时检测的可能性,提出了一种基于深度置信网络的故障电弧检测方法。首先,通过搭建三相异步电机故障电弧实验平台获取不同故障情况下的电流数据,...针对三相串联故障电弧的研究大多只是提供一种能够识别出故障电弧的方法,没有考虑用于工业实时检测的可能性,提出了一种基于深度置信网络的故障电弧检测方法。首先,通过搭建三相异步电机故障电弧实验平台获取不同故障情况下的电流数据,并利用提升小波变换对其进行去噪;其次,通过核主成分分析法KPCA(kernel principal component analysis)提取去噪之后的数据的主成分,减少需要分析的变量;最后,通过PSO优化的DBN网络进行故障识别,与BP神经网络和极限学习机相比,其检测速度更快且准确率达到了98.8%,为应用于实时检测提供了可能性。展开更多
为了解决滚动轴承故障检测中出现的振动信号非线性问题,课题团队提出了一种基于小波包-核偏最小二乘(wavelet packet and kernel partial least squares method, WP-KPLS)的故障检测方法。首先对采集到的信号进行小波包分解,将振动信号...为了解决滚动轴承故障检测中出现的振动信号非线性问题,课题团队提出了一种基于小波包-核偏最小二乘(wavelet packet and kernel partial least squares method, WP-KPLS)的故障检测方法。首先对采集到的信号进行小波包分解,将振动信号分解到独立的频段,提取不同频段的能量谱,并构建反映频谱状态改变的能量谱特征向量;再对得到的能量谱特征向量进行核偏最小二乘分析,建立故障检测模型,利用T^(2)及SPE统计量来检测故障是否发生。实验结果表明:该方法能够较为准确地检测到轴承的内外圈故障,证明该模型是有效的。该方法综合了小波包对信号的分析优势和核偏最小二乘法在非线性情况下的数据处理优点,为解决故障检测中的非线性数据处理问题提供了一种新方法。展开更多
文摘针对三相串联故障电弧的研究大多只是提供一种能够识别出故障电弧的方法,没有考虑用于工业实时检测的可能性,提出了一种基于深度置信网络的故障电弧检测方法。首先,通过搭建三相异步电机故障电弧实验平台获取不同故障情况下的电流数据,并利用提升小波变换对其进行去噪;其次,通过核主成分分析法KPCA(kernel principal component analysis)提取去噪之后的数据的主成分,减少需要分析的变量;最后,通过PSO优化的DBN网络进行故障识别,与BP神经网络和极限学习机相比,其检测速度更快且准确率达到了98.8%,为应用于实时检测提供了可能性。
文摘为了解决滚动轴承故障检测中出现的振动信号非线性问题,课题团队提出了一种基于小波包-核偏最小二乘(wavelet packet and kernel partial least squares method, WP-KPLS)的故障检测方法。首先对采集到的信号进行小波包分解,将振动信号分解到独立的频段,提取不同频段的能量谱,并构建反映频谱状态改变的能量谱特征向量;再对得到的能量谱特征向量进行核偏最小二乘分析,建立故障检测模型,利用T^(2)及SPE统计量来检测故障是否发生。实验结果表明:该方法能够较为准确地检测到轴承的内外圈故障,证明该模型是有效的。该方法综合了小波包对信号的分析优势和核偏最小二乘法在非线性情况下的数据处理优点,为解决故障检测中的非线性数据处理问题提供了一种新方法。