期刊文献+
共找到11,815篇文章
< 1 2 250 >
每页显示 20 50 100
EVOLUTION AND INTERACTION OFδ-WAVES IN THE ZERO-PRESSURE GAS DYNAMICS SYSTEM
1
作者 Abhishek DAS K.T.JOSEPH 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1801-1836,共36页
Evolution and interaction of plane waves of the multidimensional zero-pressure gas dynamics system leads to the study of the corresponding one dimensional system.In this paper,we study the initial value problem for on... Evolution and interaction of plane waves of the multidimensional zero-pressure gas dynamics system leads to the study of the corresponding one dimensional system.In this paper,we study the initial value problem for one dimensional zero-pressure gas dynamics system.Here the first equation is the Burgers equation and the second one is the continuity equation.We consider the solution with initial data in the space of bounded Borel measures.First we prove a general existence result in the algebra of generalized functions of Colombeau.Then we study in detail special solutions withδ-measures as initial data.We study interaction of waves originating from initial data concentrated on two point sources and interaction with classical shock/rarefaction waves.This gives an understanding of plane-wave interactions in the multidimensional case.We use the vanishing viscosity method in our analysis as this gives the physical solution. 展开更多
关键词 zero-pressure gas dynamics delta-waves interaction of waves
下载PDF
Influence of topography on the fine structures of stratospheric gravity waves:An analysis using COSMIC-2 temperature data 被引量:1
2
作者 JiaRui Wei Xiao Liu +2 位作者 JiYao Xu QinZeng Li Hong Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期497-513,共17页
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O... We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S. 展开更多
关键词 TOPOGRAPHY fine structures stratospheric gravity waves Constellation Observing System for Meteorology Ionosphere and Climate-2(COSMIC-2) dissipation layers
下载PDF
Astrocytic calcium waves:unveiling their roles in sleep and arousal modulation
3
作者 Erxi Wu Dan Qi +1 位作者 Damir Nizamutdinov Jason H.Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期984-987,共4页
Neuron-astrocyte interactions are vital for the brain’s connectome.Understanding astrocyte activities is crucial for comprehending the complex neural network,particularly the population-level functions of neurons in ... Neuron-astrocyte interactions are vital for the brain’s connectome.Understanding astrocyte activities is crucial for comprehending the complex neural network,particularly the population-level functions of neurons in different cortical states and associated behaviors in mammals.Studies on animal sleep and wakefulness have revealed distinct cortical synchrony patterns between neurons.Astrocytes,outnumbering neurons by nearly fivefold,support and regulate neuronal and synaptic function.Recent research on astrocyte activation during cortical state transitions has emphasized the influence of norepinephrine as a neurotransmitter and calcium waves as key components of ion channel signaling.This summary focuses on a few recent studies investigating astrocyte-neuron interactions in mouse models during sleep,wakefulness,and arousal levels,exploring the involvement of noradrenaline signaling,ion channels,and glutamatergic signaling in different cortical states.These findings highlight the significant impact of astrocytes on large-scale neuronal networks,influencing brain activity and responsiveness.Targeting astrocytic signaling pathways shows promise for treating sleep disorders and arousal dysregulation.More research is needed to understand astrocytic calcium signaling in different brain regions and its implications for dysregulated brain states,requiring future human studies to comprehensively investigate neuron-astrocyte interactions and pave the way for therapeutic interventions in sleep-and arousal-related disorders. 展开更多
关键词 AROUSAL ASTROCYTE calcium waves locus coeruleus neuron-astrocyte interaction NOREPINEPHRINE SLEEP WAKEFULNESS
下载PDF
Modeling Near-Field Impulsive Waves Generated by Deformable Landslide Using the HBP Model Based on the SPH Method
4
作者 WANG Wei WEI Weicheng +4 位作者 CHAI Bo XIA Hao WANG Yang DU Juan LIU Jizhixian 《Journal of Ocean University of China》 CAS CSCD 2024年第2期328-344,共17页
Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard re... Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard require the accurate prediction of near-field wave characteristics,such as wave amplitude and run-up.However,near-field LGW involves complicated fluid-solid interactions.Furthermore,the wave characteristics are closely related to various aspects,including the geometry and physical features of the slide,river,and body of water.However,the empirical or analytical methods used for rough estimation cannot derive accurate results,especially for deformable landslides,due to their significant geometry changes during the sliding process.In this study,the near-field waves generated by deformable landslides were simulated by smoothed particle hydrodynamics(SPH)based on multi-phase flow.The deformable landslides were generalized as a kind of viscous flow by adopting the Herschel-Bulkley-Papanastasiou(HBP)-based nonNewtonian rheology model.The HBP model is capable of producing deformable landslide dynamics even though the high-speed sliding process is involved.In this study,an idealized experiment case originating from Lituya LGW and a practical case of Gongjiafang LGW were reproduced for verification and demonstration.The simulation results of both cases show satisfactory consistency with the experiment/investigation data in terms of landslide movement and near-field impulsive wave characteristics,thus indicating the applicability and accuracy of the proposed method.Finally,the effects of the HBP model’s rheological parameters on the landslide dynamics and near-field wave characteristics are discussed,providing a parameter calibration method along with sug-gestions for further applications. 展开更多
关键词 deformable landslide impulsive waves NEAR-FIELD SPH nonNewtonian fluids
下载PDF
Contrasts of bimodal tropical instability waves(TIWs)-induced wind stress perturbations in the Pacific Ocean among observations,ocean models,and coupled climate models
5
作者 Kai MA Chuanyu LIU +1 位作者 Junli XU Fan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期1-23,共23页
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ... The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models. 展开更多
关键词 bimodal tropical instability waves mesoscale air-sea interaction coupled models Yanai wave
下载PDF
Typhoon-Induced Ocean Waves and Stokes Drift:A Case Study of Typhoon Mangkhut(2018)
6
作者 WU Zhi-yuan GAO Kai +6 位作者 CHEN Jie ZHANG Hao-jian DENG Bin JIANG Chang-bo LIU Yi-zhuang LYU Zhao YAN Ren 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期711-724,共14页
Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for Mediu... Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects. 展开更多
关键词 Stokes drift typhoon waves Ekman-Stokes transport vertical mixing Typhoon Mangkhut
下载PDF
ON MONOTONE TRAVELING WAVES FOR NICHOLSON'S BLOWFLIES EQUATION WITH DEGENERATE p-LAPLACIAN DIFFUSION
7
作者 Rui HUANG Yong WANG Zhuo YIN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1550-1571,共22页
We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth tr... We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth traveling wave solutions by phase plane analysis methods.Moreover,we show the existence and regularity of an original solution via a compactness analysis.Finally,we prove the stability and exponential convergence rate of traveling waves by an approximated weighted energy method. 展开更多
关键词 degenerate diffusion P-LAPLACIAN traveling waves stability
下载PDF
Experimental Study on the Variation of Optical Imaging Characteristics with Zenith Angle due to Internal Solitary Waves in Sunglint
8
作者 LIU Tengfei SUN Lina +4 位作者 CHANG Zhe ZHANG Meng LIANG Keda MENG Junmin WANG Jing 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期943-952,共10页
Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unc... Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result. 展开更多
关键词 internal solitary waves optical imaging characteristic laboratory simulation zenith angle sunglint
下载PDF
Pipeline thickness estimation using the dispersion of higher-order SH guided waves
9
作者 代政辰 刘金霞 +3 位作者 龙云飞 张建海 Tribikram Kundu 崔志文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期389-396,共8页
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi... Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures. 展开更多
关键词 pipeline wall thickness higher-order modes SH guided waves DISPERSION
下载PDF
Observation of Standing Slow Magneto-acoustic Waves in a Flaring Active Region Corona Loop
10
作者 A.Abedini 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第10期170-179,共10页
Intensity fluctuations are frequently observed in different regions and structures of the solar corona.These fluctuations may be caused by magneto-hydrodynamic(MHD)waves in coronal plasma.MHD waves are prime candidate... Intensity fluctuations are frequently observed in different regions and structures of the solar corona.These fluctuations may be caused by magneto-hydrodynamic(MHD)waves in coronal plasma.MHD waves are prime candidates for the dynamics,energy transfer,and anomalous temperature of the solar corona.In this paper,analysis is conducted on intensity and temperature fluctuations along the active region coronal loop(NOAA AR 13599)near solar flares.The intensity and temperature as functions of time and distance along the loop are extracted using images captured by the Atmospheric Imaging Assembly(AIA)instrument onboard the Solar Dynamics Observatory(SDO)space telescope.To observe and comprehend the causes of intensity and temperature fluctuations,after conducting initial processing,and applying spatial and temporal frequency filters to data,enhanced distance-time maps of these variables are drawn.The space-time maps of intensities show standing oscillations at wavelengths of 171,193,and 211A with greater precision and clarity than earlier findings.The amplitude of these standing oscillations(waves)decreases and increases over time.The average values of the oscillation period,damping time,damping quality,projected wavelength,and projected phase speed of standing intensity oscillations are in the range of 15-18 minutes,24-31 minutes,1.46″-2″,132″-134″,and 81-100 km s^(-1),respectively.Also,the differential emission measure peak temperature values along the loop are found in the range of 0.51-3.98 MK,using six AIA passbands,including 94,131,171,193,211,and 335?.Based on the values of oscillation periods,phase speeds,damping time,and damping quality,it is inferred that the fluctuations in intensity are related to standing slow magneto-acoustic waves with weak damping. 展开更多
关键词 magnetohydrodynamics(MHD) waves Sun:corona Sun:atmosphere Sun:flares
下载PDF
Synaptic Transmission of Primary Hippocampal Neurons was Enhanced after Terahertz Waves Exposure
11
作者 Lequan Song Zhiwei He +8 位作者 Junmiao Pan Ji Dong Haoyu Wang Jing Zhang Binwei Yao XinpingXu Hui Wang Li Zhao Ruiyun Peng 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第8期926-930,共5页
Terahertz(THz)waves,also known as T-rays,encompass frequencies ranging from 0.1 to 10 THz and possess unique properties that render them applicable in various biomedical domains,particularly in neurobiology[1].Synapti... Terahertz(THz)waves,also known as T-rays,encompass frequencies ranging from 0.1 to 10 THz and possess unique properties that render them applicable in various biomedical domains,particularly in neurobiology[1].Synaptic transmission,the process through which signals propagate between neurons at synapses,is pivotal for brain function and information processing. 展开更多
关键词 PROCESSING waves RENDER
下载PDF
Effects of counter-current driven by electron cyclotron waves on neoclassical tearing mode suppression
12
作者 高钦 郑平卫 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期501-509,共9页
Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is ... Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface. 展开更多
关键词 driven current neoclassical tearing mode modified Rutherford equation electron cyclotron waves
下载PDF
Simulating the evolution of focused waves by a two-layer Boussinesq-type model
13
作者 Ping Wang Zhongbo Liu +3 位作者 Kezhao Fang Wenfeng Zou Xiangke Dong Jiawen Sun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期91-99,共9页
Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simul... Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters. 展开更多
关键词 focused waves numerical simulation Boussinesq-type model velocity profile
下载PDF
Spatiotemporal variations of parameters of internal solitary waves in the northern South China Sea
14
作者 Yu’ang LIU Yifei JIANG +3 位作者 Xiaojiang ZHANG Zhiyuan WANG Yu CAO Huizan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期421-438,共18页
The dynamic parameters for internal solitary waves(ISWs)derived from the extended Korteweg-de Vries(eKdV)equation play an important role in the understanding and prediction of ISWs.The spatiotemporal variations of the... The dynamic parameters for internal solitary waves(ISWs)derived from the extended Korteweg-de Vries(eKdV)equation play an important role in the understanding and prediction of ISWs.The spatiotemporal variations of the dynamic parameters of the ISWs in the northern South China Sea(SCS)were studied based on the reanalysis of long-term temperature and salinity datasets.The results for spectrum analysis show that there are definite geographical differences for the periodic variation of the parameters:in shallow water,all parameters vary with a wave period of one year,while in deep water wave components of the parameters at other frequencies exist.Using wavelet analysis,the wavelet power spectral densities in deep water exhibited an inter-annual variation pattern.For example,the wave component of the dispersion coefficient with a wave period of about half a year reached its power peak once every two years.Based on previous work,this inter-annual variation pattern was deduced to be caused by dynamic processes.In further work on the regulatory mechanisms,empirical orthogonal function(EOF)decomposition was performed.It was found that the modes of the dispersion coefficient have different geographical distributions,explaining the reason why the wave components in different frequencies appeared in different locations.The numerical simulation results confirm that the variations in the parameters of the ISWs derived from the eKdV equation could affect the waveforms significantly because of changes in the polarity of the ISWs.Therefore,the periodic variations of the dynamic parameters are related to the geographical location because of dynamic processes operating. 展开更多
关键词 internal solitary waves(ISWs) dynamic parameters eKdV equation spatiotemporal variation polarity empirical orthogonal function(EOF)decomposition
下载PDF
A case study of continental shelf waves in the northwestern South China Sea induced by winter storms in 2021
15
作者 Junyi Li Chen Zhou +3 位作者 Min Li Quanan Zheng Mingming Li Lingling Xie 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期59-69,共11页
This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gaug... This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gauge data at stations Hong Kong,Zhapo and Qinglan and sea surface wind data from January 1 to February 28,2021 are used to examine the relationship between along-shelf wind and sea level fluctuation.Two events of CSWs driven by the along-shelf sea surface wind are detected from wavelet spectra of tidal gauge data.The signals are triply peaked at periods of 56 h,94 h and 180 h,propagating along the coast with phase speed ranging from 6.9 m/s to18.9 m/s.The dispersion relation shows their property of the Kelvin mode of CSW.We develop a simple method to estimate amplitude of sea surface fluctuation by along-shelf wind.The results are comparable with the observation data,suggesting it is effective.The mode 2 CSWs fits very well with the mooring current velocity data.The results from rare current help to understand wave-current interaction in the northwestern SCS. 展开更多
关键词 continental shelf waves Ekman transport Kelvin mode wavelet analysis northwestern South China Sea
下载PDF
Probing signals of atmospheric gravity waves excited by the July 29,2021 M_(W)8.2 Alaska earthquake
16
作者 Geng Zhang Jianqiao Xu +2 位作者 Xiaodong Chen Heping Sun Lizhuo Gong 《Geodesy and Geodynamics》 EI CSCD 2024年第3期219-229,共11页
It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals ex... It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h. 展开更多
关键词 Atmospheric gravity modes Atmospheric gravity waves Alaska earthquake Normal modes Coupling of solid earth and atmosphere
下载PDF
MAVEN observation of magnetosonic waves in the Martian magnetotail region
17
作者 ShangChun Teng JiCheng Sun +3 位作者 JiaWei Gao Y.Harada Markus Fraenz DeSheng Han 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期317-325,共9页
Magnetosonic waves are an important medium for energy transfer in collisionless space plasma.Magnetosonic waves have been widely investigated in the upstream of the bow shock at Mars.These waves are believed to origin... Magnetosonic waves are an important medium for energy transfer in collisionless space plasma.Magnetosonic waves have been widely investigated in the upstream of the bow shock at Mars.These waves are believed to originate from pickup ions or reflected particles.By utilizing MAVEN spacecraft data,we have observed the occurrence of quasi-perpendicularly propagating magnetosonic emissions near the proton gyrofrequency in the Martian magnetotail region.These plasma waves are associated with a significant enhancement of proton and oxygen flux.The excited magnetosonic waves could possibly heat the protons through resonance and facilitate the ionospheric plasma escape.Our results could be helpful to better understand the Mars’magnetospheric dynamics and offer insights into possible energy redistribution between waves and plasma in the Martian nightside magnetosphere. 展开更多
关键词 Martian magnetotail region magnetosonic waves proton escape
下载PDF
Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector
18
作者 陈奕康 朱宗宏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期222-228,共7页
Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merg... Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions. 展开更多
关键词 neutron star mergers gravitational waves
下载PDF
Study of the ability of SWOT to detect sea surface height changes caused by internal solitary waves
19
作者 Hao Zhang Chenqing Fan +1 位作者 Lina Sun Junmin Meng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期54-64,共11页
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t... Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms. 展开更多
关键词 internal solitary waves Surface Water and Ocean Topography(SWOT) Ka-band radar interferometer(KaRIn) Nadir altimeter(NALT) sea surface height anomaly(SSHA) normalized radar cross section(NRCS)
下载PDF
Detection of Gravitational Waves with Semi Classical Features and Resulting Cosmological Implications
20
作者 Andrew Walcott Beckwith 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期454-467,共14页
The author argues in this document that initial vacuum state values possibly responsible for GW generation in relic conditions in the initial onset of inflation may have a temporary unsqueezed, possibly even coherent ... The author argues in this document that initial vacuum state values possibly responsible for GW generation in relic conditions in the initial onset of inflation may have a temporary unsqueezed, possibly even coherent initial value, which would permit in certain models classical coherent initial gravitational wave states. Furthermore, several arguments pro and con as to if or not initial relic GW should be high frequency will be presented, with the reason given why earlier string models did NOT favor low frequency relic GW from the big bang. What is observed is that large higher dimensions above our 4 Dimensional space time, if recipients of matter-energy from collapse and re birth of the universe are enough to insure low relic GW. The existence of higher dimensions, in itself if the additional dimensions are small and compact will have no capacity to lower the frequency limit values of relic GW, as predicted by Giovannini, et al. in 1995. 展开更多
关键词 Graviton DM Squeezed States Coherent States High Frequency Gravity waves
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部