We introduce a weak Galerkin finite element method for the valuation of American options governed by the Black-Scholes equation. In order to implement, we need to solve the optimal exercise boundary and then introduce...We introduce a weak Galerkin finite element method for the valuation of American options governed by the Black-Scholes equation. In order to implement, we need to solve the optimal exercise boundary and then introduce an artificial boundary to make the computational domain bounded. For the optimal exercise boundary, which satisfies a nonlinear Volterra integral equation, it is resolved by a higher-order collocation method based on graded meshes. With the computed optimal exercise boundary, the front-fixing technique is employed to transform the free boundary problem to a one- dimensional parabolic problem in a half infinite area. For the other spatial domain boundary, a perfectly matched layer is used to truncate the unbounded domain and carry out the computation. Finally, the resulting initial-boundary value problems are solved by weak Galerkin finite element method, and numerical examples are provided to illustrate the efficiency of the method.展开更多
In this paper, we use the weak Galerkin (WG) finite element method to solve the mixed form linear elasticity problem. In the mixed form, we get the discrete of proximation of the stress tensor and the displacement f...In this paper, we use the weak Galerkin (WG) finite element method to solve the mixed form linear elasticity problem. In the mixed form, we get the discrete of proximation of the stress tensor and the displacement field. For the WG methods, we define the weak function and the weak differential operator in an optimal polynomial approximation spaces. The optimal error estimates are given and numerical results are presented to demonstrate the efficiency and the accuracy of the weak Galerkin finite element method.展开更多
A stabilizer-free weak Galerkin finite element method is proposed for the Stokes equations in this paper.Here we omit the stabilizer term in the new method by increasing the degree of polynomial approximating spaces f...A stabilizer-free weak Galerkin finite element method is proposed for the Stokes equations in this paper.Here we omit the stabilizer term in the new method by increasing the degree of polynomial approximating spaces for the weak gradient operators.The new algorithm is simple in formulation and the computational complexity is also reduced.The corresponding approximating spaces consist of piecewise polynomials of degree k≥1 for the velocity and k-1 for the pressure,respectively.Optimal order error estimates have been derived for the velocity in both H^(1) and L^(2) norms and for the pressure in L^(2) norm.Numerical examples are presented to illustrate the accuracy and convergency of the method.展开更多
In this paper,we solve linear parabolic integral differential equations using the weak Galerkin finite element method(WG)by adding a stabilizer.The semidiscrete and fully-discrete weak Galerkin finite element schemes ...In this paper,we solve linear parabolic integral differential equations using the weak Galerkin finite element method(WG)by adding a stabilizer.The semidiscrete and fully-discrete weak Galerkin finite element schemes are constructed.Optimal convergent orders of the solution of the WG in L^(2) and H^(1) norm are derived.Several computational results confirm the correctness and efficiency of the method.展开更多
In this work,a modified weak Galerkin finite element method is proposed for solving second order linear parabolic singularly perturbed convection-diffusion equations.The key feature of the proposed method is to replac...In this work,a modified weak Galerkin finite element method is proposed for solving second order linear parabolic singularly perturbed convection-diffusion equations.The key feature of the proposed method is to replace the classical gradient and divergence operators by the modified weak gradient and modified divergence operators,respectively.We apply the backward finite difference method in time and the modified weak Galerkin finite element method in space on uniform mesh.The stability analyses are presented for both semi-discrete and fully-discrete modified weak Galerkin finite element methods.Optimal order of convergences are obtained in suitable norms.We have achieved the same accuracy with the weak Galerkin method while the degrees of freedom are reduced in our method.Various numerical examples are presented to support the theoretical results.It is theoretically and numerically shown that the method is quite stable.展开更多
In this paper,we propose a new numerical scheme for the coupled Stokes-Darcy model with the Beavers-Joseph-Saffman interface condition.We use the weak Galerkin method to discretize the Stokes equation and the mixed fi...In this paper,we propose a new numerical scheme for the coupled Stokes-Darcy model with the Beavers-Joseph-Saffman interface condition.We use the weak Galerkin method to discretize the Stokes equation and the mixed finite element method to discretize the Darcy equation.A discrete inf-sup condition is proved and the optimal error estimates are also derived.Numerical experiments validate the theoretical analysis.展开更多
In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivati...In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.展开更多
This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomi...This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions.The non-conforming finite element space of the WG method is the key of the lower bound property.It also makes the WG method more robust and flexible in solving eigenvalue problems.We demonstrate that the WG method can achieve arbitrary high convergence order.This is in contrast with existing nonconforming finite element methods which can provide lower bound approximations by linear finite elements.Numerical results are presented to demonstrate the efficiency and accuracy of the theoretical results.展开更多
The linear hyperbolic equation is of great interest inmany branches of physics and industry.In this paper,we use theweak Galerkinmethod to solve the linear hyperbolic equation.Since the weak Galerkin finite element sp...The linear hyperbolic equation is of great interest inmany branches of physics and industry.In this paper,we use theweak Galerkinmethod to solve the linear hyperbolic equation.Since the weak Galerkin finite element space consists of discontinuous polynomials,the discontinuous feature of the equation can be maintained.The optimal error estimates are proved.Some numerical experiments are provided to verify the efficiency of the method.展开更多
This article extends a recently developed superconvergence result for weak Galerkin(WG)approximations for modeling partial differential equations from constant coefficients to variable coefficients.This superconvergen...This article extends a recently developed superconvergence result for weak Galerkin(WG)approximations for modeling partial differential equations from constant coefficients to variable coefficients.This superconvergence features a rate that is two orders higher than the optimal-order error estimates in the usual energy and L^(2)norms.The extension from constant to variable coefficients for the modeling equations is highly non-trivial.The underlying technical analysis is based on a sequence of projections and decompositions.Numerical results confirm the superconvergence theory for second-order elliptic problems with variable coefficients.展开更多
This paper proposes and analyzes a new weak Galerkin method for the eigenvalue problem by using the shifted-inverse power technique.A high order lower bound can be obtained at a relatively low cost via the proposed me...This paper proposes and analyzes a new weak Galerkin method for the eigenvalue problem by using the shifted-inverse power technique.A high order lower bound can be obtained at a relatively low cost via the proposed method.The error estimates for both eigenvalue and eigenfunction are provided and asymptotic lower bounds are shown as well under some conditions.Numerical examples are presented to validate the theoretical analysis.展开更多
We study the error analysis of the weak Galerkin finite element method in[24,38](WG-FEM)for the Helmholtz problem with large wave number in two and three dimensions.Using a modified duality argument proposed by Zhu an...We study the error analysis of the weak Galerkin finite element method in[24,38](WG-FEM)for the Helmholtz problem with large wave number in two and three dimensions.Using a modified duality argument proposed by Zhu and Wu,we obtain the pre-asymptotic error estimates of the WG-FEM.In particular,the error estimates with explicit dependence on the wave number k are derived.This shows that the pollution error in the broken H1-norm is bounded by O(k(kh)^(2p))under mesh condition k^(7/2)h^(2)≤C0 or(kh)^(2)+k(kh)^(p+1)≤C_(0),which coincides with the phase error of the finite element method obtained by existent dispersion analyses.Here h is the mesh size,p is the order of the approximation space and C_(0) is a constant independent of k and h.Furthermore,numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the WG-FEM in reducing the pollution effect.展开更多
基金Acknowledgements The authors would like to thank the anonymous referees for their careflll reading of the manuscript and their valuable comments. The authors also wish to thank the High Performance Computing Center of Jilin University and C, omputing Center of ,lilin Province for essential support. This work was supported by the National Natural Science Foundation of China Grant Nos. 11271157, 11371171), the Open Project Program of the State Key Lab of CAD&CG (A1302) of Zhejiang University, the Scientific Research Foundation for bleturned Scholars, Ministry of Education of China. and UIBE (11QD17).
文摘We introduce a weak Galerkin finite element method for the valuation of American options governed by the Black-Scholes equation. In order to implement, we need to solve the optimal exercise boundary and then introduce an artificial boundary to make the computational domain bounded. For the optimal exercise boundary, which satisfies a nonlinear Volterra integral equation, it is resolved by a higher-order collocation method based on graded meshes. With the computed optimal exercise boundary, the front-fixing technique is employed to transform the free boundary problem to a one- dimensional parabolic problem in a half infinite area. For the other spatial domain boundary, a perfectly matched layer is used to truncate the unbounded domain and carry out the computation. Finally, the resulting initial-boundary value problems are solved by weak Galerkin finite element method, and numerical examples are provided to illustrate the efficiency of the method.
基金The authors would like to thank China National Natural Science Foundation (91630201, U1530116, 11726102, 11771179), and the Program for Cheung Kong Scholars of Ministry of Education of China, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, 3ilin University, Changchun, 130012, P.R. China.
文摘In this paper, we use the weak Galerkin (WG) finite element method to solve the mixed form linear elasticity problem. In the mixed form, we get the discrete of proximation of the stress tensor and the displacement field. For the WG methods, we define the weak function and the weak differential operator in an optimal polynomial approximation spaces. The optimal error estimates are given and numerical results are presented to demonstrate the efficiency and the accuracy of the weak Galerkin finite element method.
基金supported in part by China Natural National Science Foundation(Nos.91630201,U1530116,11726102,11771179,93K172018Z01,11701210,JJKH20180113KJ,20190103029JH)by the Program for Cheung Kong Scholars of Ministry of Education of China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education.The research of Liu was partially supported by China Natural National Science Foundation(No.12001306)Guangdong Provincial Natural Science Foundation(No.2017A030310285).
文摘A stabilizer-free weak Galerkin finite element method is proposed for the Stokes equations in this paper.Here we omit the stabilizer term in the new method by increasing the degree of polynomial approximating spaces for the weak gradient operators.The new algorithm is simple in formulation and the computational complexity is also reduced.The corresponding approximating spaces consist of piecewise polynomials of degree k≥1 for the velocity and k-1 for the pressure,respectively.Optimal order error estimates have been derived for the velocity in both H^(1) and L^(2) norms and for the pressure in L^(2) norm.Numerical examples are presented to illustrate the accuracy and convergency of the method.
基金supported in part by China Natural National Science Foundation(No.11901015)and China Postdoctoral Science Foundation(Nos.2018M640013 and 2019T120008)The research of Ran Zhang was supported in part by China Natural National Science Foundation(Nos.91630201,U1530116,11726102,11771179,93K172018Z01,11701210,JJKH20180113KJ and 20190103029JH)by the Program for Cheung Kong Scholars of Ministry of Education of China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education.
文摘In this paper,we solve linear parabolic integral differential equations using the weak Galerkin finite element method(WG)by adding a stabilizer.The semidiscrete and fully-discrete weak Galerkin finite element schemes are constructed.Optimal convergent orders of the solution of the WG in L^(2) and H^(1) norm are derived.Several computational results confirm the correctness and efficiency of the method.
基金supported in part by National Natural Science Foundation of China (No.11871038).
文摘In this work,a modified weak Galerkin finite element method is proposed for solving second order linear parabolic singularly perturbed convection-diffusion equations.The key feature of the proposed method is to replace the classical gradient and divergence operators by the modified weak gradient and modified divergence operators,respectively.We apply the backward finite difference method in time and the modified weak Galerkin finite element method in space on uniform mesh.The stability analyses are presented for both semi-discrete and fully-discrete modified weak Galerkin finite element methods.Optimal order of convergences are obtained in suitable norms.We have achieved the same accuracy with the weak Galerkin method while the degrees of freedom are reduced in our method.Various numerical examples are presented to support the theoretical results.It is theoretically and numerically shown that the method is quite stable.
基金National Natural Science Foundation of China(Grant Nos.11901015,11971198,91630201,11871245,11771179 and 11826101)the Program for Cheung Kong Scholars(Grant No.Q2016067)Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University。
文摘In this paper,we propose a new numerical scheme for the coupled Stokes-Darcy model with the Beavers-Joseph-Saffman interface condition.We use the weak Galerkin method to discretize the Stokes equation and the mixed finite element method to discretize the Darcy equation.A discrete inf-sup condition is proved and the optimal error estimates are also derived.Numerical experiments validate the theoretical analysis.
基金supported by National Natural Science Foundation of China(Grant Nos.11271157,11371171 and 11471141)the Program for New Century Excellent Talents in University of Ministry of Education of China
文摘In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.
基金supported in part by China Natural National Science Foundation(91630201,U1530116,11771179)by the Program for Cheung Kong Scholars of Ministry of Education of China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun,130012,P.R.China+3 种基金supported in part by the National Natural Science Foundation of China(NSFC 11471031,91430216)and the U.S.National Science Foundation(DMS–1419040)supported by Science Challenge Project(No.TZ2016002)National Natural Science Foundations of China(NSFC 11771434,91330202,11371026,91430108,11771322,11626033,11601368)the National Center for Mathematics and Interdisciplinary Science,CAS.
文摘This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions.The non-conforming finite element space of the WG method is the key of the lower bound property.It also makes the WG method more robust and flexible in solving eigenvalue problems.We demonstrate that the WG method can achieve arbitrary high convergence order.This is in contrast with existing nonconforming finite element methods which can provide lower bound approximations by linear finite elements.Numerical results are presented to demonstrate the efficiency and accuracy of the theoretical results.
基金The research of R.Zhangwas supported in part by China Natural National Science Foundation(U1530116,91630201,11471141)by the Program for Cheung Kong Scholars of Ministry of Education of China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun,130012,P.R.China.
文摘The linear hyperbolic equation is of great interest inmany branches of physics and industry.In this paper,we use theweak Galerkinmethod to solve the linear hyperbolic equation.Since the weak Galerkin finite element space consists of discontinuous polynomials,the discontinuous feature of the equation can be maintained.The optimal error estimates are proved.Some numerical experiments are provided to verify the efficiency of the method.
基金supported by U.S.National Science Foundation IR/D program while working at U.S.National Science Foundationsupported by U.S.National Science Foundation(Grant No.DMS-1620016)+1 种基金supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LY23A010005)National Natural Science Foundation of China(Grant No.12071184)。
文摘This article extends a recently developed superconvergence result for weak Galerkin(WG)approximations for modeling partial differential equations from constant coefficients to variable coefficients.This superconvergence features a rate that is two orders higher than the optimal-order error estimates in the usual energy and L^(2)norms.The extension from constant to variable coefficients for the modeling equations is highly non-trivial.The underlying technical analysis is based on a sequence of projections and decompositions.Numerical results confirm the superconvergence theory for second-order elliptic problems with variable coefficients.
基金The work of Q.Zhai was partially supported by China Postdoc total Science Foundation(2018M640013,2019T120008)The work of X.Hu was partially supported by NSF grant(DMS-1620063)+1 种基金The work of R.Zhang was supported in part by China Natural National Science Foundation(91630201,11871245,11771179)by the Program for Cheung Kong Scholars of Ministry of Education of China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun,130012,P.R.China.
文摘This paper proposes and analyzes a new weak Galerkin method for the eigenvalue problem by using the shifted-inverse power technique.A high order lower bound can be obtained at a relatively low cost via the proposed method.The error estimates for both eigenvalue and eigenfunction are provided and asymptotic lower bounds are shown as well under some conditions.Numerical examples are presented to validate the theoretical analysis.
基金The work was supported in part by the National Natural Science Foundation grants 11471031,91430216,and 11601026NSAF U1530401+1 种基金the U.S.National Science Foundation grant DMS1419040and the China Postdoctoral Science Foundation grant 2016M591053.
文摘We study the error analysis of the weak Galerkin finite element method in[24,38](WG-FEM)for the Helmholtz problem with large wave number in two and three dimensions.Using a modified duality argument proposed by Zhu and Wu,we obtain the pre-asymptotic error estimates of the WG-FEM.In particular,the error estimates with explicit dependence on the wave number k are derived.This shows that the pollution error in the broken H1-norm is bounded by O(k(kh)^(2p))under mesh condition k^(7/2)h^(2)≤C0 or(kh)^(2)+k(kh)^(p+1)≤C_(0),which coincides with the phase error of the finite element method obtained by existent dispersion analyses.Here h is the mesh size,p is the order of the approximation space and C_(0) is a constant independent of k and h.Furthermore,numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the WG-FEM in reducing the pollution effect.