The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorpti...The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.展开更多
In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since hum...In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since humic acids of different molecular weights have different hydrophilic and molecular size, the maximum adsorption capacity of basic ion exchange resins appears on the humic acid whose molecular weight ranges from 6000 to 10,000 Da.展开更多
The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle...The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle size, initial reactant molar ratio and temperature on the reaction rate have been examined. Experimental kinetic data were correlated by using the pseudo-homogeneous, Langnluir-Hinshelwood and Eley-Rideal models. Nonideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution method UNIFAC. Provided that the nonideality of the liquid is taken into account, the esterification kinetics of lactic acid with isobutanol and n-butanol catalyzed by the acid ion-exchange resin can be described using all threemodels with reasonable errors.展开更多
The authors discovered a new way to clean the ion exchange resin sorption of uranium from silicic acid used solution "Ayanat". The method reduces the costs of regeneration of ion exchange resin and its reuse in the ...The authors discovered a new way to clean the ion exchange resin sorption of uranium from silicic acid used solution "Ayanat". The method reduces the costs of regeneration of ion exchange resin and its reuse in the sorption of uranium.展开更多
The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic ...The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.展开更多
A strong acidic ion exchange resin(NKC-9)was used as a new adsorbent material for the removal of Co(Ⅱ)from aqueous solutions.The adsorption isotherm follows the Langmuir model.The maximum adsorption capacity of the r...A strong acidic ion exchange resin(NKC-9)was used as a new adsorbent material for the removal of Co(Ⅱ)from aqueous solutions.The adsorption isotherm follows the Langmuir model.The maximum adsorption capacity of the resin for Co(Ⅱ)is evaluated to be 361.0 mg/g by the Langmuir model.It is found that 0.5 mol/L HCl solution provides effectiveness of the desorption of Co(Ⅱ)from the resin.The adsorption rate constants determined at 288,298 and 308 K are 7.12×10-5,8.51×10-5and 9.85×10-5s-1, respectively.The apparent activation energy(Ea)is 12.0 kJ/mol and the adsorption parameters of thermodynamic are-H Θ=16.1 kJ/mol,-SΘ=163.4 J/(mol·K),-G Θ 298 K=-32.6 kJ/mol,respectively.The adsorption of Co(Ⅱ)on the resin is found to be endothermic in nature.Column experiments show that it is possible to remove Co(Ⅱ)ions from aqueous medium dynamically by NKC-9 resin.展开更多
Several cyclic amino acids (1-4) were synthesized from glycine. Isocyanate ester was prepared as the key intermediate and reacted with dibromoalkanes to afford the target compounds.
Macroporous weak basic anion exchanger (D301R) was used to remove organic substances from drilling wastewater. The effect of pH, temperature and contact time on adsorption behavior was investigated in batch experime...Macroporous weak basic anion exchanger (D301R) was used to remove organic substances from drilling wastewater. The effect of pH, temperature and contact time on adsorption behavior was investigated in batch experiments, which indicated that the COD (Chemical Oxygen Demand) removal ratio of drilling wastewater was approximately 90%, and the COD of treated wastewater was below 70 mg/L under appropriate operating conditions. A mixed liquor of NaOH and NaCI was selected as desorbent because of its better elution performance. The results of column dynamic adsorption and regeneration showed that the COD of wastewater could be efficiently removed by D301R resin, and the resin was easily regenerated by the selected desorbent.展开更多
Two novel weakly basic anion exchange resins(SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene(Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respect...Two novel weakly basic anion exchange resins(SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene(Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid(BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution p H, temperature and coexisting competitive inorganic salts(Na2SO4and Na Cl) on adsorption behavior were investigated and the optimum desorption agent was obtained.Adsorption isotherms of BA were found to be well represented by the Langmuir model.Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by Na Cl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1for potential industrial application.展开更多
The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li+ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure. Catalyst activity and stability we...The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li+ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure. Catalyst activity and stability were found to be influenced by the catalyst acidity related to Bronsted acid sites and by the presence of oxygen in the feed. The NH3-TPD and FTIR-pyridine results demonstrated that partially exchanged of H+ ions by Li+ into the W/HZSM-5 catalysts could be used to control the amount of strong acid sites on the catalyst surface. Without oxygen, the 3WHLi-Z (5:1) catalyst that has strong acid sites equal to nearly 74% of the original strong acid sites in the parent HZSM-5 exhibited the highest methane conversion and selectivity towards aromatics. However, the catalyst deactivated in a five hour period. In the presence of oxygen, the catalyst activity and stability could be improved further. The results of this study revealed that a suitable amount of strong Bronsted acid sites as well as oxygen addition in the feed increased the catalyst activity and stability. The 3WHLi-Z(5:1) catalyst exhibited improved performance in the dehydroaromatization of methane.展开更多
A novel aliphatic sulfonie acid ion exchange resin was prepared from ethylenediamined polystyrene(PS-acyl-EDA),2-acrylamido-2-methylproanesulfonic acid(AMPS)by Michael reaction.This kind of resin has a longer chain th...A novel aliphatic sulfonie acid ion exchange resin was prepared from ethylenediamined polystyrene(PS-acyl-EDA),2-acrylamido-2-methylproanesulfonic acid(AMPS)by Michael reaction.This kind of resin has a longer chain than conventional sulphonic polystyrene resin,that is,the former is easier to react with other compound.The effect of the reaction time,reaction temperature,catalyst amount,reagent amount and the charge ration on reaction result were discussed.Under the optimum condition,the maximum loading of the sulfonie acid ion exchange resin could be up to 1.15 mmol·g-1 resin.The product was characterized with FT-IR.The filling material of chromatographic column could be prepared by this method.展开更多
基金Projects(21376251,21406233) supported by the National Natural Science Foundation of China
文摘The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.
基金support provided by the National Nature Science Fund(No.50778088)China National Funds for Distinguished Young Scientists(No.50825802)Resources Special Subject of National High Technology Research & Development Project(863 project,No.2006AA06Z383),China.
文摘In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since humic acids of different molecular weights have different hydrophilic and molecular size, the maximum adsorption capacity of basic ion exchange resins appears on the humic acid whose molecular weight ranges from 6000 to 10,000 Da.
基金Supported by the National Basic Research Program of China (2007CB714300)
文摘The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle size, initial reactant molar ratio and temperature on the reaction rate have been examined. Experimental kinetic data were correlated by using the pseudo-homogeneous, Langnluir-Hinshelwood and Eley-Rideal models. Nonideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution method UNIFAC. Provided that the nonideality of the liquid is taken into account, the esterification kinetics of lactic acid with isobutanol and n-butanol catalyzed by the acid ion-exchange resin can be described using all threemodels with reasonable errors.
文摘The authors discovered a new way to clean the ion exchange resin sorption of uranium from silicic acid used solution "Ayanat". The method reduces the costs of regeneration of ion exchange resin and its reuse in the sorption of uranium.
文摘The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.
基金Project(2008F70059) supported by Zhejiang Provincial Scientific and Technological Research Planning, ChinaProject(Z200907459) supported by the Key Grant of Education Department of Zhejiang Province, China
文摘A strong acidic ion exchange resin(NKC-9)was used as a new adsorbent material for the removal of Co(Ⅱ)from aqueous solutions.The adsorption isotherm follows the Langmuir model.The maximum adsorption capacity of the resin for Co(Ⅱ)is evaluated to be 361.0 mg/g by the Langmuir model.It is found that 0.5 mol/L HCl solution provides effectiveness of the desorption of Co(Ⅱ)from the resin.The adsorption rate constants determined at 288,298 and 308 K are 7.12×10-5,8.51×10-5and 9.85×10-5s-1, respectively.The apparent activation energy(Ea)is 12.0 kJ/mol and the adsorption parameters of thermodynamic are-H Θ=16.1 kJ/mol,-SΘ=163.4 J/(mol·K),-G Θ 298 K=-32.6 kJ/mol,respectively.The adsorption of Co(Ⅱ)on the resin is found to be endothermic in nature.Column experiments show that it is possible to remove Co(Ⅱ)ions from aqueous medium dynamically by NKC-9 resin.
基金the National Natural Science Foundation of China(No.20272001)
文摘Several cyclic amino acids (1-4) were synthesized from glycine. Isocyanate ester was prepared as the key intermediate and reacted with dibromoalkanes to afford the target compounds.
文摘Macroporous weak basic anion exchanger (D301R) was used to remove organic substances from drilling wastewater. The effect of pH, temperature and contact time on adsorption behavior was investigated in batch experiments, which indicated that the COD (Chemical Oxygen Demand) removal ratio of drilling wastewater was approximately 90%, and the COD of treated wastewater was below 70 mg/L under appropriate operating conditions. A mixed liquor of NaOH and NaCI was selected as desorbent because of its better elution performance. The results of column dynamic adsorption and regeneration showed that the COD of wastewater could be efficiently removed by D301R resin, and the resin was easily regenerated by the selected desorbent.
基金supported by the National Natural Science Foundation of China(No.51578131)the Natural Science Foundation of Jiangsu Province,China(No.BK20131287)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Two novel weakly basic anion exchange resins(SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene(Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid(BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution p H, temperature and coexisting competitive inorganic salts(Na2SO4and Na Cl) on adsorption behavior were investigated and the optimum desorption agent was obtained.Adsorption isotherms of BA were found to be well represented by the Langmuir model.Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by Na Cl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1for potential industrial application.
文摘The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li+ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure. Catalyst activity and stability were found to be influenced by the catalyst acidity related to Bronsted acid sites and by the presence of oxygen in the feed. The NH3-TPD and FTIR-pyridine results demonstrated that partially exchanged of H+ ions by Li+ into the W/HZSM-5 catalysts could be used to control the amount of strong acid sites on the catalyst surface. Without oxygen, the 3WHLi-Z (5:1) catalyst that has strong acid sites equal to nearly 74% of the original strong acid sites in the parent HZSM-5 exhibited the highest methane conversion and selectivity towards aromatics. However, the catalyst deactivated in a five hour period. In the presence of oxygen, the catalyst activity and stability could be improved further. The results of this study revealed that a suitable amount of strong Bronsted acid sites as well as oxygen addition in the feed increased the catalyst activity and stability. The 3WHLi-Z(5:1) catalyst exhibited improved performance in the dehydroaromatization of methane.
文摘A novel aliphatic sulfonie acid ion exchange resin was prepared from ethylenediamined polystyrene(PS-acyl-EDA),2-acrylamido-2-methylproanesulfonic acid(AMPS)by Michael reaction.This kind of resin has a longer chain than conventional sulphonic polystyrene resin,that is,the former is easier to react with other compound.The effect of the reaction time,reaction temperature,catalyst amount,reagent amount and the charge ration on reaction result were discussed.Under the optimum condition,the maximum loading of the sulfonie acid ion exchange resin could be up to 1.15 mmol·g-1 resin.The product was characterized with FT-IR.The filling material of chromatographic column could be prepared by this method.