This paper discussed the effects of irrigation with well water on the salinity and pH of a weakly alkaline paddy soil in Fujin of Heilongjiang Province in the north-eastern part of China.It has been found that after s...This paper discussed the effects of irrigation with well water on the salinity and pH of a weakly alkaline paddy soil in Fujin of Heilongjiang Province in the north-eastern part of China.It has been found that after seven years the accumulation of total soluble salts did not occur and that the pH of 0~15 cm layer fell down from 7.92~8.30 to 6.76~7.45,and that the content of anion HCO - 3 and its proportion in the total soluble anions have fallen down.Conversion from paddy soil to upland restored the pH of soil,exchangeable sodium,ESR(exchangeable sodium ratio) to their original levels of upland fields respectively.展开更多
A synthesis route of using calcium hydroxide Ca(OH)2 with ethylene glycol solvent and orthophosphoric acid (H3PO4) as reagents is described. Three ratios of ethylene glycol to distilled water 1:0, 1:1 and 0:1 are used...A synthesis route of using calcium hydroxide Ca(OH)2 with ethylene glycol solvent and orthophosphoric acid (H3PO4) as reagents is described. Three ratios of ethylene glycol to distilled water 1:0, 1:1 and 0:1 are used as diluting media for Ca(OH)2. Crystals of different morphology and composition are formed under weak alkaline circumstance at pH 7.0-8.0. Acicular calcium phosphate nanocrystals are prepared in pure ethylene glycol while rod-like calcium phosphate nanocrystals form in pure distilled water. The nanograde size of the former is smaller than that of the latter. Calcium-deficient apatite (CDAP) is obtained with a Ca/P molar ratio of 1.66. Therefore, it was deduced that the usage of ethylene glycol solvent could influence the formation of calcium phosphate crystal lattice.展开更多
This study reports a new weakly alkaline slurry for copper chemical mechanical planarization (CMP), it can achieve a high planarization efficiency at a reduced down pressure of 1.0 psi. The slurry is studied through...This study reports a new weakly alkaline slurry for copper chemical mechanical planarization (CMP), it can achieve a high planarization efficiency at a reduced down pressure of 1.0 psi. The slurry is studied through the polish rate, planarization, copper surface roughness and stability. The copper polishing experiment result shows that the polish rate can reach 10032 A/rain. From the multi-layers copper CMP test, a good result is obtained, that is a big step height (10870 A) that can be eliminated in just 35 s, and the copper root mean square surface roughness (sq) is very low (〈 1 rim). Apart from this, compared with the alkaline slurry researched before, it has a good progress on stability of copper polishing rate, stable for 12 h at least. All the results presented here are relevant for further developments in the area of copper CMP.展开更多
Chemical mechanical polishing(CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing perfo...Chemical mechanical polishing(CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive(colloidal silica), complexing agent(glycine), inhibitor(BTA) and oxidizing agent(H_2O_2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine,200 ppm BTA, 20 m L/L H_2O_2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness(Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development.展开更多
文摘This paper discussed the effects of irrigation with well water on the salinity and pH of a weakly alkaline paddy soil in Fujin of Heilongjiang Province in the north-eastern part of China.It has been found that after seven years the accumulation of total soluble salts did not occur and that the pH of 0~15 cm layer fell down from 7.92~8.30 to 6.76~7.45,and that the content of anion HCO - 3 and its proportion in the total soluble anions have fallen down.Conversion from paddy soil to upland restored the pH of soil,exchangeable sodium,ESR(exchangeable sodium ratio) to their original levels of upland fields respectively.
基金We would like to acknowledge the support from the Ministry of Science and Technology of China(2001BA310A).
文摘A synthesis route of using calcium hydroxide Ca(OH)2 with ethylene glycol solvent and orthophosphoric acid (H3PO4) as reagents is described. Three ratios of ethylene glycol to distilled water 1:0, 1:1 and 0:1 are used as diluting media for Ca(OH)2. Crystals of different morphology and composition are formed under weak alkaline circumstance at pH 7.0-8.0. Acicular calcium phosphate nanocrystals are prepared in pure ethylene glycol while rod-like calcium phosphate nanocrystals form in pure distilled water. The nanograde size of the former is smaller than that of the latter. Calcium-deficient apatite (CDAP) is obtained with a Ca/P molar ratio of 1.66. Therefore, it was deduced that the usage of ethylene glycol solvent could influence the formation of calcium phosphate crystal lattice.
基金Project supported by the Special Project Items No.2 in National Long-Term Technology Development Plan,China(No.2009ZX02308)the Hebei Natural Science Foundation of China(No.F2012202094)
文摘This study reports a new weakly alkaline slurry for copper chemical mechanical planarization (CMP), it can achieve a high planarization efficiency at a reduced down pressure of 1.0 psi. The slurry is studied through the polish rate, planarization, copper surface roughness and stability. The copper polishing experiment result shows that the polish rate can reach 10032 A/rain. From the multi-layers copper CMP test, a good result is obtained, that is a big step height (10870 A) that can be eliminated in just 35 s, and the copper root mean square surface roughness (sq) is very low (〈 1 rim). Apart from this, compared with the alkaline slurry researched before, it has a good progress on stability of copper polishing rate, stable for 12 h at least. All the results presented here are relevant for further developments in the area of copper CMP.
基金supported by the Major National Science and Technology Special Projects(No.2016ZX02301003-004-007)the Professional Degree Teaching Case Foundation of Hebei Province,China(No.KCJSZ2017008)+1 种基金the Natural Science Foundation of Hebei Province,China(No.F2015202267)the Natural Science Foundation of Tianjin,China(No.16JCYBJC16100)
文摘Chemical mechanical polishing(CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive(colloidal silica), complexing agent(glycine), inhibitor(BTA) and oxidizing agent(H_2O_2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine,200 ppm BTA, 20 m L/L H_2O_2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness(Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development.