期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
On Weak Braided T-category
1
作者 史美华 贾玲 《Chinese Quarterly Journal of Mathematics》 2016年第3期248-259,共12页
Recently Turaev generalized the notion of a tensor category to that of a crossed group category.In[5]the authors constructed the representation category Rep(H) of a T-coalgebra H.In[2]the authors introduced the notion... Recently Turaev generalized the notion of a tensor category to that of a crossed group category.In[5]the authors constructed the representation category Rep(H) of a T-coalgebra H.In[2]the authors introduced the notions of a weak tensor category to characterize a weak bialgebra and a weak Hopf algebra.This paper is based on these ideas to naturally introduce the notions of a weak T-category and a weak braided T-category which are not under the usual way and prove that the categories of representations of a weak T-coalgebra and a weak braided T-coalgebra are a weak T-category and a weak braided T-category respectively.Furthermore we also discuss some properties of weak T-category. 展开更多
关键词 weak T-coalgebra braided weak T-coalgebra weak crossed group category braided weak crossed group category
下载PDF
Weak Tensor Category and Related Generalized Hopf Algebras 被引量:1
2
作者 Fang LI Gong Xiang LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第4期1027-1046,共20页
There are at least two kinds of generalization of Hopf algebra, i.e. pre-Hopf algebra and weak Hopf algebra. Correspondingly, we have two kinds of generalized bialgebras, almost bialgebra and weak bialgebra. Let L = ... There are at least two kinds of generalization of Hopf algebra, i.e. pre-Hopf algebra and weak Hopf algebra. Correspondingly, we have two kinds of generalized bialgebras, almost bialgebra and weak bialgebra. Let L = (L, ×, I, a, l, r) be a tensor category. By giving up I, l, r and keeping ×, a in L, the first author got so-called pre-tensor category L = (L, ×, a) and used it to characterize almost bialgebra and pre-Hopf algebra in Comm. in Algebra, 32(2): 397-441 (2004). Our aim in this paper is to generalize tensor category L = (L, ×, I, a, l, r) by weakening the natural isomorphisms l, r, i.e. exchanging the natural isomorphism ll^-1 = rr^-1 = id into regular natural transformations lll= l, rrr = r with some other conditions and get so-called weak tensor category so as to characterize weak bialgebra and weak Hopf algebra. The relations between these generalized (bialgebras) Hopf algebras and two kinds generalized tensor categories will be described by using of diagrams. Moreover, some related concepts and properties about weak tensor category will be discussed. 展开更多
关键词 weak tensor category weak Hopf algebra Pre-Hopf algebra Strictization
原文传递
Weak rigid monoidal category 被引量:1
3
作者 Haijun CAO 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第1期19-33,共15页
We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hop... We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hopf algebra structure of H = End(F) whenever (F, J) is a fiber functor from category l to Vec and every X ∈ l has a right regular dual. To conclude, we give a weak reconstruction theorem for a kind of weak Hopf algebra. 展开更多
关键词 Semilattice graded weak Hopf algebra regular right dual weak rigid monoidal category
原文传递
Categorical resolutions of a class of derived categories 被引量:4
4
作者 Pu Zhang 《Science China Mathematics》 SCIE CSCD 2018年第2期391-402,共12页
We clarify the relation between the subcategory D_(hf)~b(A) of homological finite objects in D^b(A)and the subcategory K^b(P) of perfect complexes in D^b(A), by giving two classes of abelian categories A with enough p... We clarify the relation between the subcategory D_(hf)~b(A) of homological finite objects in D^b(A)and the subcategory K^b(P) of perfect complexes in D^b(A), by giving two classes of abelian categories A with enough projective objects such that D_(hf)~b(A) = K^b(P), and finding an example such that D_(hf)~b(A)≠K^b(P). We realize the bounded derived category D^b(A) as a Verdier quotient of the relative derived category D_C^b(A), where C is an arbitrary resolving contravariantly finite subcategory of A. Using this relative derived categories, we get categorical resolutions of a class of bounded derived categories of module categories of infinite global dimension.We prove that if an Artin algebra A of infinite global dimension has a module T with inj.dimT <∞ such that ~⊥T is finite, then D^b(modA) admits a categorical resolution; and that for a CM(Cohen-Macaulay)-finite Gorenstein algebra, such a categorical resolution is weakly crepant. 展开更多
关键词 homologically finite object perfect complex smooth triangulated category weakly crepant)categorical resolution (relative) derived category CM-finite Gorenstein algebra
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部