Recently Turaev generalized the notion of a tensor category to that of a crossed group category.In[5]the authors constructed the representation category Rep(H) of a T-coalgebra H.In[2]the authors introduced the notion...Recently Turaev generalized the notion of a tensor category to that of a crossed group category.In[5]the authors constructed the representation category Rep(H) of a T-coalgebra H.In[2]the authors introduced the notions of a weak tensor category to characterize a weak bialgebra and a weak Hopf algebra.This paper is based on these ideas to naturally introduce the notions of a weak T-category and a weak braided T-category which are not under the usual way and prove that the categories of representations of a weak T-coalgebra and a weak braided T-coalgebra are a weak T-category and a weak braided T-category respectively.Furthermore we also discuss some properties of weak T-category.展开更多
There are at least two kinds of generalization of Hopf algebra, i.e. pre-Hopf algebra and weak Hopf algebra. Correspondingly, we have two kinds of generalized bialgebras, almost bialgebra and weak bialgebra. Let L = ...There are at least two kinds of generalization of Hopf algebra, i.e. pre-Hopf algebra and weak Hopf algebra. Correspondingly, we have two kinds of generalized bialgebras, almost bialgebra and weak bialgebra. Let L = (L, ×, I, a, l, r) be a tensor category. By giving up I, l, r and keeping ×, a in L, the first author got so-called pre-tensor category L = (L, ×, a) and used it to characterize almost bialgebra and pre-Hopf algebra in Comm. in Algebra, 32(2): 397-441 (2004). Our aim in this paper is to generalize tensor category L = (L, ×, I, a, l, r) by weakening the natural isomorphisms l, r, i.e. exchanging the natural isomorphism ll^-1 = rr^-1 = id into regular natural transformations lll= l, rrr = r with some other conditions and get so-called weak tensor category so as to characterize weak bialgebra and weak Hopf algebra. The relations between these generalized (bialgebras) Hopf algebras and two kinds generalized tensor categories will be described by using of diagrams. Moreover, some related concepts and properties about weak tensor category will be discussed.展开更多
We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hop...We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hopf algebra structure of H = End(F) whenever (F, J) is a fiber functor from category l to Vec and every X ∈ l has a right regular dual. To conclude, we give a weak reconstruction theorem for a kind of weak Hopf algebra.展开更多
We clarify the relation between the subcategory D_(hf)~b(A) of homological finite objects in D^b(A)and the subcategory K^b(P) of perfect complexes in D^b(A), by giving two classes of abelian categories A with enough p...We clarify the relation between the subcategory D_(hf)~b(A) of homological finite objects in D^b(A)and the subcategory K^b(P) of perfect complexes in D^b(A), by giving two classes of abelian categories A with enough projective objects such that D_(hf)~b(A) = K^b(P), and finding an example such that D_(hf)~b(A)≠K^b(P). We realize the bounded derived category D^b(A) as a Verdier quotient of the relative derived category D_C^b(A), where C is an arbitrary resolving contravariantly finite subcategory of A. Using this relative derived categories, we get categorical resolutions of a class of bounded derived categories of module categories of infinite global dimension.We prove that if an Artin algebra A of infinite global dimension has a module T with inj.dimT <∞ such that ~⊥T is finite, then D^b(modA) admits a categorical resolution; and that for a CM(Cohen-Macaulay)-finite Gorenstein algebra, such a categorical resolution is weakly crepant.展开更多
基金Supported by the Natural Science Foundation of Shandong Province(ZR2012AL02)
文摘Recently Turaev generalized the notion of a tensor category to that of a crossed group category.In[5]the authors constructed the representation category Rep(H) of a T-coalgebra H.In[2]the authors introduced the notions of a weak tensor category to characterize a weak bialgebra and a weak Hopf algebra.This paper is based on these ideas to naturally introduce the notions of a weak T-category and a weak braided T-category which are not under the usual way and prove that the categories of representations of a weak T-coalgebra and a weak braided T-coalgebra are a weak T-category and a weak braided T-category respectively.Furthermore we also discuss some properties of weak T-category.
基金the Program for New Century Excellent Talents in University(No.04-0522)the National Natural Science Foundation of China(No.10571153)the Natural Science Foundation of Zhejiang Province of China(No.102028)
文摘There are at least two kinds of generalization of Hopf algebra, i.e. pre-Hopf algebra and weak Hopf algebra. Correspondingly, we have two kinds of generalized bialgebras, almost bialgebra and weak bialgebra. Let L = (L, ×, I, a, l, r) be a tensor category. By giving up I, l, r and keeping ×, a in L, the first author got so-called pre-tensor category L = (L, ×, a) and used it to characterize almost bialgebra and pre-Hopf algebra in Comm. in Algebra, 32(2): 397-441 (2004). Our aim in this paper is to generalize tensor category L = (L, ×, I, a, l, r) by weakening the natural isomorphisms l, r, i.e. exchanging the natural isomorphism ll^-1 = rr^-1 = id into regular natural transformations lll= l, rrr = r with some other conditions and get so-called weak tensor category so as to characterize weak bialgebra and weak Hopf algebra. The relations between these generalized (bialgebras) Hopf algebras and two kinds generalized tensor categories will be described by using of diagrams. Moreover, some related concepts and properties about weak tensor category will be discussed.
文摘We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hopf algebra structure of H = End(F) whenever (F, J) is a fiber functor from category l to Vec and every X ∈ l has a right regular dual. To conclude, we give a weak reconstruction theorem for a kind of weak Hopf algebra.
基金supported by National Natural Science Foundation of China(Grant Nos.11271251 and 11431010)
文摘We clarify the relation between the subcategory D_(hf)~b(A) of homological finite objects in D^b(A)and the subcategory K^b(P) of perfect complexes in D^b(A), by giving two classes of abelian categories A with enough projective objects such that D_(hf)~b(A) = K^b(P), and finding an example such that D_(hf)~b(A)≠K^b(P). We realize the bounded derived category D^b(A) as a Verdier quotient of the relative derived category D_C^b(A), where C is an arbitrary resolving contravariantly finite subcategory of A. Using this relative derived categories, we get categorical resolutions of a class of bounded derived categories of module categories of infinite global dimension.We prove that if an Artin algebra A of infinite global dimension has a module T with inj.dimT <∞ such that ~⊥T is finite, then D^b(modA) admits a categorical resolution; and that for a CM(Cohen-Macaulay)-finite Gorenstein algebra, such a categorical resolution is weakly crepant.