In this paper,we first introduce the weak Lipschitz spaces WLip_(q,α),1<q<∞,0<α<1 which are the analog of weak Lebesgue spaces L^(q,∞)in the setting of Lipschitz space.We obtain the equivalence between...In this paper,we first introduce the weak Lipschitz spaces WLip_(q,α),1<q<∞,0<α<1 which are the analog of weak Lebesgue spaces L^(q,∞)in the setting of Lipschitz space.We obtain the equivalence between the norm ||·||_(Lipα)and ||·||_(()WLip_(q,α)).As an application,we show that the commutator M_(β)~b is bounded from L~p to L^(q,∞) for some p ∈(1,∞) and 1/p-1/q=(α+β)/n if and only if b is in Lip_(α).We also introduce the weak central bounded mean oscillation space WCBMO_(q,α) and give a characterization of WCBMO_(q,α) via the boundedness of the commutators of Hardy type operators.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.11871452)the Natural Science Foundation of Henan Province (Grant No.202300410338)the Nanhu Scholar Program for Young Scholars of Xinyang Normal University。
文摘In this paper,we first introduce the weak Lipschitz spaces WLip_(q,α),1<q<∞,0<α<1 which are the analog of weak Lebesgue spaces L^(q,∞)in the setting of Lipschitz space.We obtain the equivalence between the norm ||·||_(Lipα)and ||·||_(()WLip_(q,α)).As an application,we show that the commutator M_(β)~b is bounded from L~p to L^(q,∞) for some p ∈(1,∞) and 1/p-1/q=(α+β)/n if and only if b is in Lip_(α).We also introduce the weak central bounded mean oscillation space WCBMO_(q,α) and give a characterization of WCBMO_(q,α) via the boundedness of the commutators of Hardy type operators.