Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). ...Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is 〈 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection.展开更多
This paper presents a method for generating entanglement molecules, which is introduced by Dur (2001 Phys. Rev. A). In this scheme, N ladder-type three-level atoms are sent through a resonant weak coherent cavity fi...This paper presents a method for generating entanglement molecules, which is introduced by Dur (2001 Phys. Rev. A). In this scheme, N ladder-type three-level atoms are sent through a resonant weak coherent cavity field, then the system states are measured. And the system field may collapse onto some possible types of entanglement molecules. Meanwhile it discusses about the interaction time from the experimental point of view, and compare the result with the previous scheme proposed by Huang (2004 J. Phys. B: At. Mol. Opt. Phys.).展开更多
基金Project supported by the National Basic Research Program of China(Grants Nos.2011CBA00200 and 2011CB921200)the National Natural Science Foundation of China(Grant Nos.61201239,61205118,11304397,and 61475148)the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB01030100 and XDB01030300)
文摘Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is 〈 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection.
基金supported by the Natural Science Foundation of Fujian Province of China (Grant No T0650007)Funds from Education Department of Fujian Province of China (Grant No JB06041)
文摘This paper presents a method for generating entanglement molecules, which is introduced by Dur (2001 Phys. Rev. A). In this scheme, N ladder-type three-level atoms are sent through a resonant weak coherent cavity field, then the system states are measured. And the system field may collapse onto some possible types of entanglement molecules. Meanwhile it discusses about the interaction time from the experimental point of view, and compare the result with the previous scheme proposed by Huang (2004 J. Phys. B: At. Mol. Opt. Phys.).