This paper proposes a modified iterative algorithm using a viscosity approximation method with a weak contraction.The purpose is to find a common element of the set of common fixed points of an infinite family of none...This paper proposes a modified iterative algorithm using a viscosity approximation method with a weak contraction.The purpose is to find a common element of the set of common fixed points of an infinite family of nonexpansive mappings and the set of a finite family of equilibrium problems that is also a solution to a variational inequality.Under suitable conditions,some strong convergence theorems are established in the framework of Hilbert spaces.The results presented in the paper improve and extend the corresponding results of Colao et al.(Colao,V.,Acedo,G.L.,and Marino,G.An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings.Nonlinear Anal.71,2708–2715(2009)),Plubtieng and Punpaeng(Plubtieng,S.and Punpaeng,R.A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces.J.Math.Anal.Appl.336,455–469(2007)),Colao et al.(Colao,V.,Marino,G.,and Xu,H.K.An iterative method for finding common solutions of equilibrium problem and fixed point problems.J.Math.Anal.Appl.344,340–352(2008)),Yao et al.(Yao,Y.,Liou,Y.C.,and Yao,J.C.Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings.Fixed Point Theory Application 2007,Article ID 64363(2007)DOI 10.1155/2007/64363),and others.展开更多
Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems....Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems.It is known that many problems in applied sciences and engineering can be formulated as functional equations.Such equations can be transferred to fixed point theorems in an easy manner.Moreover,we use the fixed point theory to prove the existence and uniqueness of solutions of such integral and differential equations.Let X be a non-empty set.A fixed point for a self-mapping T on X is a point𝑒𝑒∈𝑋𝑋that satisfying T e=e.One of the most challenging problems in mathematics is to construct some iterations to faster the calculation or approximation of the fixed point of such problems.Some mathematicians constructed and generated some new iteration schemes to calculate or approximate the fixed point of such problems such as Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Berinde(2004b);Agarwal,O’Regan and Sahu(2007)].The main purpose of the present paper is to introduce and construct a new iteration scheme to calculate or approximate the fixed point within a fewer number of steps as much as we can.We prove that our iteration scheme is faster than the iteration schemes given by Sintunavarat et al.[Sintunavarat and Pitea(2016);Agarwal,O’Regan and Sahu(2007);Mann(1953);Ishikawa(1974)].We give some numerical examples by using MATLAB to compare the efficiency and effectiveness of our iterations scheme with the efficiency of Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Abbas and Nazir(2014);Agarwal,O’Regan and Sahu(2007)]schemes.Moreover,we introduce a problem raised from Newton’s law of cooling as an application of our new iteration scheme.Also,we support our application with a numerical example and figures to illustrate the validity of our iterative scheme.展开更多
The present work considers the endpoint in the abstract metric space. It firstly introduces the metric space of partially ordered groups and the metric space of partially ordered modules, respectively;and defines the ...The present work considers the endpoint in the abstract metric space. It firstly introduces the metric space of partially ordered groups and the metric space of partially ordered modules, respectively;and defines the convergence of sequences and the multi-valued weak contractions, etc., on the introduced space. And then, with the methods of functional analysis and abstract algebra, it successively establishes an endpoint theorem for the metric space of partially ordered groups and an endpoint theorem for the metric space of partially ordered modules. The contributions of this article extend the theory of cone metric space constructed by Huang and Zhang (2007) and some recent results on the fixed point and endpoint theory, such as the endpoint theorem given by Amini-Harandi (2010).展开更多
In this article, we introduce a new type of contraction named almost type α-F-Z-weak contraction, which comes from a combination of F-contraction, Z-contraction, and almost contraction, and then we provide sufficient...In this article, we introduce a new type of contraction named almost type α-F-Z-weak contraction, which comes from a combination of F-contraction, Z-contraction, and almost contraction, and then we provide sufficient conditions for the existence and uniqueness of fixed point of such contractions in complete metric spaces and give some related fixed point results. In addition, some related fixed point results can derive from our main results.展开更多
Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K ...Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K be the unique fixed point of the weak contraction x1→tf(x)+(1-t)Tx. If T has a fixed point and E admits a weakly sequentially continuous duality mapping from E to E^*, then it is shown that {xt} converges to a fixed point of T as t→0. The results presented here improve and generalize the corresponding results in (Xu, 2004).展开更多
In this paper, using the context of complete partial metric spaces, some common fixed point results of maps that satisfy the generalized (ψ, Ф)-weak contractive conditions are obtained. Our results generalize, ext...In this paper, using the context of complete partial metric spaces, some common fixed point results of maps that satisfy the generalized (ψ, Ф)-weak contractive conditions are obtained. Our results generalize, extend, unify, enrich and complement many existing results in the literature. Example are given showing the validaty of our results.展开更多
In this paper, we give existence theorems of common fixed points for two mappings with a weakly C*-contractive condition on partially ordered 2-metric spaces and give a sufficient condition under which there exists a ...In this paper, we give existence theorems of common fixed points for two mappings with a weakly C*-contractive condition on partially ordered 2-metric spaces and give a sufficient condition under which there exists a unique common fixed point.展开更多
In this paper, we discuss the concept of fixed point curve for linear interpolations of weakly inward contractions and establish necessary condition for a nonex- pansive mapping to have approximate fixed point property.
借助具弱压缩的粘性逼近,提出一种新的修正的迭代算法,用以寻求一公共元,它既是一无穷族非扩张映像的公共不动点集中的点,也是一有限族的平衡问题的解集中的点,而且它还是一变分不等式的解.在适当的条件下,一些强收敛定理在Hilbert空间...借助具弱压缩的粘性逼近,提出一种新的修正的迭代算法,用以寻求一公共元,它既是一无穷族非扩张映像的公共不动点集中的点,也是一有限族的平衡问题的解集中的点,而且它还是一变分不等式的解.在适当的条件下,一些强收敛定理在Hilbert空间的框架下被建立.所得结果推广和改进了Colao等[Nonlinear Anal,2009,71:2708-2715],Plubtieng等[JMath Anal Appl,2007,336:455-469],Colao等[JMath Anal Appl,2008,344:340-352],Yao等[Fixed Point Theory Appl,2007,ArtID64363]及其他人的一些最新的结果.展开更多
基金supported by the Natural Science Foundation of Yibin University(No.2009Z3)
文摘This paper proposes a modified iterative algorithm using a viscosity approximation method with a weak contraction.The purpose is to find a common element of the set of common fixed points of an infinite family of nonexpansive mappings and the set of a finite family of equilibrium problems that is also a solution to a variational inequality.Under suitable conditions,some strong convergence theorems are established in the framework of Hilbert spaces.The results presented in the paper improve and extend the corresponding results of Colao et al.(Colao,V.,Acedo,G.L.,and Marino,G.An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings.Nonlinear Anal.71,2708–2715(2009)),Plubtieng and Punpaeng(Plubtieng,S.and Punpaeng,R.A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces.J.Math.Anal.Appl.336,455–469(2007)),Colao et al.(Colao,V.,Marino,G.,and Xu,H.K.An iterative method for finding common solutions of equilibrium problem and fixed point problems.J.Math.Anal.Appl.344,340–352(2008)),Yao et al.(Yao,Y.,Liou,Y.C.,and Yao,J.C.Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings.Fixed Point Theory Application 2007,Article ID 64363(2007)DOI 10.1155/2007/64363),and others.
文摘Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems.It is known that many problems in applied sciences and engineering can be formulated as functional equations.Such equations can be transferred to fixed point theorems in an easy manner.Moreover,we use the fixed point theory to prove the existence and uniqueness of solutions of such integral and differential equations.Let X be a non-empty set.A fixed point for a self-mapping T on X is a point𝑒𝑒∈𝑋𝑋that satisfying T e=e.One of the most challenging problems in mathematics is to construct some iterations to faster the calculation or approximation of the fixed point of such problems.Some mathematicians constructed and generated some new iteration schemes to calculate or approximate the fixed point of such problems such as Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Berinde(2004b);Agarwal,O’Regan and Sahu(2007)].The main purpose of the present paper is to introduce and construct a new iteration scheme to calculate or approximate the fixed point within a fewer number of steps as much as we can.We prove that our iteration scheme is faster than the iteration schemes given by Sintunavarat et al.[Sintunavarat and Pitea(2016);Agarwal,O’Regan and Sahu(2007);Mann(1953);Ishikawa(1974)].We give some numerical examples by using MATLAB to compare the efficiency and effectiveness of our iterations scheme with the efficiency of Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Abbas and Nazir(2014);Agarwal,O’Regan and Sahu(2007)]schemes.Moreover,we introduce a problem raised from Newton’s law of cooling as an application of our new iteration scheme.Also,we support our application with a numerical example and figures to illustrate the validity of our iterative scheme.
文摘The present work considers the endpoint in the abstract metric space. It firstly introduces the metric space of partially ordered groups and the metric space of partially ordered modules, respectively;and defines the convergence of sequences and the multi-valued weak contractions, etc., on the introduced space. And then, with the methods of functional analysis and abstract algebra, it successively establishes an endpoint theorem for the metric space of partially ordered groups and an endpoint theorem for the metric space of partially ordered modules. The contributions of this article extend the theory of cone metric space constructed by Huang and Zhang (2007) and some recent results on the fixed point and endpoint theory, such as the endpoint theorem given by Amini-Harandi (2010).
文摘In this article, we introduce a new type of contraction named almost type α-F-Z-weak contraction, which comes from a combination of F-contraction, Z-contraction, and almost contraction, and then we provide sufficient conditions for the existence and uniqueness of fixed point of such contractions in complete metric spaces and give some related fixed point results. In addition, some related fixed point results can derive from our main results.
文摘Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K be the unique fixed point of the weak contraction x1→tf(x)+(1-t)Tx. If T has a fixed point and E admits a weakly sequentially continuous duality mapping from E to E^*, then it is shown that {xt} converges to a fixed point of T as t→0. The results presented here improve and generalize the corresponding results in (Xu, 2004).
文摘In this paper, using the context of complete partial metric spaces, some common fixed point results of maps that satisfy the generalized (ψ, Ф)-weak contractive conditions are obtained. Our results generalize, extend, unify, enrich and complement many existing results in the literature. Example are given showing the validaty of our results.
文摘In this paper, we give existence theorems of common fixed points for two mappings with a weakly C*-contractive condition on partially ordered 2-metric spaces and give a sufficient condition under which there exists a unique common fixed point.
文摘In this paper, we discuss the concept of fixed point curve for linear interpolations of weakly inward contractions and establish necessary condition for a nonex- pansive mapping to have approximate fixed point property.
文摘借助具弱压缩的粘性逼近,提出一种新的修正的迭代算法,用以寻求一公共元,它既是一无穷族非扩张映像的公共不动点集中的点,也是一有限族的平衡问题的解集中的点,而且它还是一变分不等式的解.在适当的条件下,一些强收敛定理在Hilbert空间的框架下被建立.所得结果推广和改进了Colao等[Nonlinear Anal,2009,71:2708-2715],Plubtieng等[JMath Anal Appl,2007,336:455-469],Colao等[JMath Anal Appl,2008,344:340-352],Yao等[Fixed Point Theory Appl,2007,ArtID64363]及其他人的一些最新的结果.