In this study, we investigated the nucleation mechanism of perovskite films by employing isopropanol(IPA), a weakly coordinating solvent, to anneal both PbI2 and CH3 NH3 PbI3 in the sequential deposition and CsPbI3 in...In this study, we investigated the nucleation mechanism of perovskite films by employing isopropanol(IPA), a weakly coordinating solvent, to anneal both PbI2 and CH3 NH3 PbI3 in the sequential deposition and CsPbI3 in the one-step deposition. IPA solvent annealing(IPA SA) of PbI2 films was carried out at different temperatures. The grain size,compactness, roughness and morphology of PbI2 and CH3 NH3 PbI3 films were seriously affected by annealing methods. Similarly, weakly coordinating solvent annealing process was also employed to anneal all inorganic CsPbI3 perovskite in a one-step method. A continuous and dense CsPbI3 film with uniform grain size was obtained. We recognized that weakly coordinating solvent annealing for perovskite could regulate the dissolution-recrystallization process via controlling the volume of residual solvent in perovskite intermediate films. The power conversion efficiency(PCE) of conventional CH3 NH3 PbI3 perovskite solar cells(PSCs)reached 17.4% and that of CsPbI3 PSCs reached 2.5% based on this sequential IPA SA process.展开更多
A rhodium-catalyzed directing group promoted selective C-H olefination reaction of indolizines at the 8-position is re ported.Di-olefination at 2,8-positions also achieved with silver hexafluoroantimonate as an additi...A rhodium-catalyzed directing group promoted selective C-H olefination reaction of indolizines at the 8-position is re ported.Di-olefination at 2,8-positions also achieved with silver hexafluoroantimonate as an additive under similar reaction conditions.Weakly coordinating groups,such as ketone,alde hyde,amide and ester,were used as directing groups.The ester group can be removed under acid conditions and therefore is used as a traceless directing group.展开更多
In this paper,porous partially fluorinated graphene(PFG)for supercapacitors(SCs)was fabricated by a mild and secure one-pot hydrothermal method utilizing weakly coordinating anion BF_(4)^(-) as the fluorine source.The...In this paper,porous partially fluorinated graphene(PFG)for supercapacitors(SCs)was fabricated by a mild and secure one-pot hydrothermal method utilizing weakly coordinating anion BF_(4)^(-) as the fluorine source.The hydrolysis rate of sodium fluoroborate was adjusted by controlling the reaction temperature and PFG containing semi-ionic C-F bonds was obtained,where the content of semi-ionic C-F bonds in PFG can be easily regulated.The final experimental results show that the incorporation of fluorine not only modulates the electrochemical properties of the material,but also creates abundant pores.When assembled in a symmetric supercapacitor,the PFG shows a high specific capacitance of 269.7 F g^(-1) at 1 A g^(-1) and a superior rate capability with 89.3%capacitance retained,as the current density is increased from 1 A g^(-1)even to 20 A g^(-1).Furthermore,the resultant energy density for PFG is 9.4 Wh kg^(-1) at a power density of 250.0 W kg^(-1)(1 A g^(-1)).All these results confirm that as-prepared partially fluorinated graphene is appropriate for the application in SCs and mass production.展开更多
Lewis acid−base adducts resulting from instantaneous interactions provide a cost-effective strategy for color tuning and anticounterfeiting information.Herein,we report the construction of luminescent Lewis acid−base ...Lewis acid−base adducts resulting from instantaneous interactions provide a cost-effective strategy for color tuning and anticounterfeiting information.Herein,we report the construction of luminescent Lewis acid−base adducts via inkjet printing.Due to the unique weak coordination bond of B→N,it is feasible to construct anticounterfeiting information that is easy to erase.The in situ postsynthesis of the luminescent quick response codes via inkjet printing facilitates precision chemistry control to change the emission ranging from deep-blue(peaking at 407 nm)to orange-red(peaking at 597 nm).The encrypted information can be quickly erased either by modulating the temperature to dissociate the weak coordination or strong Lewis base to promote a neutralization reaction.展开更多
In the past decade,transition-metal-catalyzed C–H functionalization by weak coordination has emerged as a practical and powerful tool to access many valuable chemicals.Two classes of weakly coordinating directing gro...In the past decade,transition-metal-catalyzed C–H functionalization by weak coordination has emerged as a practical and powerful tool to access many valuable chemicals.Two classes of weakly coordinating directing groups,commonly occurring functional groups,and easily removable auxiliaries,have been found to be efficient and practical for C–H activation reactions.This mini-review contains examples of recent research advances on transition-metal-catalyzed SP2 C–H functionalization via weak coordination,using Ru,Rh,and Pd.A number of weakly coordinating functional groups(e.g.,ketone,ester,carbamate,tertiary amide,ether,thioether,alcohol,and some others)are covered.As the field of transition-metal-catalyzed C–H functionalization continues to develop and more synthetically useful chemo-,regio-,and enantioselective reactions catalyzed by transition metal via weak coordination are discovered,this promising and attractive strategy will play a more important role in modern organic synthesis.展开更多
A Pd(Ⅱ)-catalyzed ortho-olefination of aromatic acetic esters is described which features with an excellent funcitional group tolerance, good yields, mild reaction conditions, good scalability as well as high chemo...A Pd(Ⅱ)-catalyzed ortho-olefination of aromatic acetic esters is described which features with an excellent funcitional group tolerance, good yields, mild reaction conditions, good scalability as well as high chemo-and regio-selectivity.展开更多
Synthesis of stable main-group element-based radicals represents one of the most interesting topics in contemporary organometallic chem- istry, because of their vital roles in organic, inorganic and biological chemist...Synthesis of stable main-group element-based radicals represents one of the most interesting topics in contemporary organometallic chem- istry, because of their vital roles in organic, inorganic and biological chemistry as well as materials science. However, the access of stable main-group element-based radicals is highly challenging owing to the lack of energetically accessible orbitals in the main-group elements. During the last decades, several synthetic strategies have been developed in obtaining these reactive species. Among them, utilizing the stericaliy demanding substituents and x-conjugated ligands has proven to be an effective approach. Weakly coordinating ions (WCAs) have also been found to be exceptionally practical in synthesizing radical cations of main-group elements. By introducing these stabilization methods, we have successfully prepared a variety of radical ions of p-block elements in the crystalline forms, and investigated their properties by different experimental and quantum chemical calculation methods. According to the investigations, magnetic stability was observed, resulting from the intramolecular electron-exchange interaction. Furthermore, we also found that the singlet-triptet energy gaps of the bis(triarylamine) diradical dications can be tunable by varying the temperature. These investigations open new avenues of the main-group element-based radicals for a large variety of applications.展开更多
基金supported by the National Natural Science Foundation of China(61574029,61421002 and 61574029)supported by University of Kentucky
文摘In this study, we investigated the nucleation mechanism of perovskite films by employing isopropanol(IPA), a weakly coordinating solvent, to anneal both PbI2 and CH3 NH3 PbI3 in the sequential deposition and CsPbI3 in the one-step deposition. IPA solvent annealing(IPA SA) of PbI2 films was carried out at different temperatures. The grain size,compactness, roughness and morphology of PbI2 and CH3 NH3 PbI3 films were seriously affected by annealing methods. Similarly, weakly coordinating solvent annealing process was also employed to anneal all inorganic CsPbI3 perovskite in a one-step method. A continuous and dense CsPbI3 film with uniform grain size was obtained. We recognized that weakly coordinating solvent annealing for perovskite could regulate the dissolution-recrystallization process via controlling the volume of residual solvent in perovskite intermediate films. The power conversion efficiency(PCE) of conventional CH3 NH3 PbI3 perovskite solar cells(PSCs)reached 17.4% and that of CsPbI3 PSCs reached 2.5% based on this sequential IPA SA process.
基金Jiangsu Province(No.BK20161307 and“333”Talents Project for H.Hu)Huaiyin Normal University(No.JSKC18014)for their financial support。
文摘A rhodium-catalyzed directing group promoted selective C-H olefination reaction of indolizines at the 8-position is re ported.Di-olefination at 2,8-positions also achieved with silver hexafluoroantimonate as an additive under similar reaction conditions.Weakly coordinating groups,such as ketone,alde hyde,amide and ester,were used as directing groups.The ester group can be removed under acid conditions and therefore is used as a traceless directing group.
基金supported by National Natural Science Foundation of China(21905304)Natural Science Foundation of Shandong Province(ZX20210028)the Fundamental Research Funds for the Central Universities(19CX05001A).
文摘In this paper,porous partially fluorinated graphene(PFG)for supercapacitors(SCs)was fabricated by a mild and secure one-pot hydrothermal method utilizing weakly coordinating anion BF_(4)^(-) as the fluorine source.The hydrolysis rate of sodium fluoroborate was adjusted by controlling the reaction temperature and PFG containing semi-ionic C-F bonds was obtained,where the content of semi-ionic C-F bonds in PFG can be easily regulated.The final experimental results show that the incorporation of fluorine not only modulates the electrochemical properties of the material,but also creates abundant pores.When assembled in a symmetric supercapacitor,the PFG shows a high specific capacitance of 269.7 F g^(-1) at 1 A g^(-1) and a superior rate capability with 89.3%capacitance retained,as the current density is increased from 1 A g^(-1)even to 20 A g^(-1).Furthermore,the resultant energy density for PFG is 9.4 Wh kg^(-1) at a power density of 250.0 W kg^(-1)(1 A g^(-1)).All these results confirm that as-prepared partially fluorinated graphene is appropriate for the application in SCs and mass production.
基金financially supported by the National Natural Science Foundation of China(No.62175189)the Program for Promoting Academic Collaboration and Senior Talent Fostering between China and Canada,Australia,New Zealand,and Latin America(2021-109)the joint China-Sweden Mobility programme(No.52211530052).
文摘Lewis acid−base adducts resulting from instantaneous interactions provide a cost-effective strategy for color tuning and anticounterfeiting information.Herein,we report the construction of luminescent Lewis acid−base adducts via inkjet printing.Due to the unique weak coordination bond of B→N,it is feasible to construct anticounterfeiting information that is easy to erase.The in situ postsynthesis of the luminescent quick response codes via inkjet printing facilitates precision chemistry control to change the emission ranging from deep-blue(peaking at 407 nm)to orange-red(peaking at 597 nm).The encrypted information can be quickly erased either by modulating the temperature to dissociate the weak coordination or strong Lewis base to promote a neutralization reaction.
基金supported by the National Basic Research Program of China(2011CB965300)the National Natural Science Foundation of China(21142008,21302106)Tsinghua University 985 Phase II Funds,and the Tsinghua University Initiative Scientific Research Program
文摘In the past decade,transition-metal-catalyzed C–H functionalization by weak coordination has emerged as a practical and powerful tool to access many valuable chemicals.Two classes of weakly coordinating directing groups,commonly occurring functional groups,and easily removable auxiliaries,have been found to be efficient and practical for C–H activation reactions.This mini-review contains examples of recent research advances on transition-metal-catalyzed SP2 C–H functionalization via weak coordination,using Ru,Rh,and Pd.A number of weakly coordinating functional groups(e.g.,ketone,ester,carbamate,tertiary amide,ether,thioether,alcohol,and some others)are covered.As the field of transition-metal-catalyzed C–H functionalization continues to develop and more synthetically useful chemo-,regio-,and enantioselective reactions catalyzed by transition metal via weak coordination are discovered,this promising and attractive strategy will play a more important role in modern organic synthesis.
基金Financial support from the National Natural Science Foundation of China(No.21202049)the Recruitment Program of Global Experts(1000 Talents Plan)+1 种基金the Natural Science Foundation of Fujian Province(No.2016J01064)Fujian Hundred Talents Plan and Program of Innovative Research Team of Huaqiao University(No.Z14X0047)are gratefully acknowledged
文摘A Pd(Ⅱ)-catalyzed ortho-olefination of aromatic acetic esters is described which features with an excellent funcitional group tolerance, good yields, mild reaction conditions, good scalability as well as high chemo-and regio-selectivity.
基金We thank the National Key R&D Program of China (Grant 2016YFA0300404, X.W.) and the National Natural Science Foundation of China (Grants 21525102, 21690062, X.W. and 21601082, G.T.) for financial support. Dr. Li Zhang is acknowledged for proofreading the manuscript.
文摘Synthesis of stable main-group element-based radicals represents one of the most interesting topics in contemporary organometallic chem- istry, because of their vital roles in organic, inorganic and biological chemistry as well as materials science. However, the access of stable main-group element-based radicals is highly challenging owing to the lack of energetically accessible orbitals in the main-group elements. During the last decades, several synthetic strategies have been developed in obtaining these reactive species. Among them, utilizing the stericaliy demanding substituents and x-conjugated ligands has proven to be an effective approach. Weakly coordinating ions (WCAs) have also been found to be exceptionally practical in synthesizing radical cations of main-group elements. By introducing these stabilization methods, we have successfully prepared a variety of radical ions of p-block elements in the crystalline forms, and investigated their properties by different experimental and quantum chemical calculation methods. According to the investigations, magnetic stability was observed, resulting from the intramolecular electron-exchange interaction. Furthermore, we also found that the singlet-triptet energy gaps of the bis(triarylamine) diradical dications can be tunable by varying the temperature. These investigations open new avenues of the main-group element-based radicals for a large variety of applications.