Lewis acid−base adducts resulting from instantaneous interactions provide a cost-effective strategy for color tuning and anticounterfeiting information.Herein,we report the construction of luminescent Lewis acid−base ...Lewis acid−base adducts resulting from instantaneous interactions provide a cost-effective strategy for color tuning and anticounterfeiting information.Herein,we report the construction of luminescent Lewis acid−base adducts via inkjet printing.Due to the unique weak coordination bond of B→N,it is feasible to construct anticounterfeiting information that is easy to erase.The in situ postsynthesis of the luminescent quick response codes via inkjet printing facilitates precision chemistry control to change the emission ranging from deep-blue(peaking at 407 nm)to orange-red(peaking at 597 nm).The encrypted information can be quickly erased either by modulating the temperature to dissociate the weak coordination or strong Lewis base to promote a neutralization reaction.展开更多
基金financially supported by the National Natural Science Foundation of China(No.62175189)the Program for Promoting Academic Collaboration and Senior Talent Fostering between China and Canada,Australia,New Zealand,and Latin America(2021-109)the joint China-Sweden Mobility programme(No.52211530052).
文摘Lewis acid−base adducts resulting from instantaneous interactions provide a cost-effective strategy for color tuning and anticounterfeiting information.Herein,we report the construction of luminescent Lewis acid−base adducts via inkjet printing.Due to the unique weak coordination bond of B→N,it is feasible to construct anticounterfeiting information that is easy to erase.The in situ postsynthesis of the luminescent quick response codes via inkjet printing facilitates precision chemistry control to change the emission ranging from deep-blue(peaking at 407 nm)to orange-red(peaking at 597 nm).The encrypted information can be quickly erased either by modulating the temperature to dissociate the weak coordination or strong Lewis base to promote a neutralization reaction.