Two sand packs were filled with fine glass beads and quartz sand respectively. The characteristics of crosslinked polymer flowing through the sand packs as well as the influence of shear fracture of porous media on th...Two sand packs were filled with fine glass beads and quartz sand respectively. The characteristics of crosslinked polymer flowing through the sand packs as well as the influence of shear fracture of porous media on the indepth profile modification of the weak gel generated from the crosslinked polymer were investigated. The results indicated that under the dynamic condition crosslinking reaction happened in both sand packs, and the weak gels in these two cases became small gel particles after water flooding. The differences were: the dynamic gelation time in the quartz sand pack was longer than that in the glass bead pack. Residual resistance factor (FRR) caused by the weak gel in the quartz sand pack was smaller than that in the glass bead pack. The weak gel became gel particles after being scoured by subsequent flood water. A weak gel with uniform apparent viscosity and sealing characteristics was generated in every part of the glass bead pack, which could not only move deeply into the sand pack but also seal the high capacity channels again when it reached the deep part. The weak gel performed in-depth profile modification in the glass bead pack, while in the quartz sand pack, the weak gel was concentrated with 100 cm from the entrance of the sand pack. When propelled by the subsequent flood water, the weak gel could move towards the deep part of the sand pack but then became tiny gel particles and could not effectively seal the high capacity channels there. The in-depth profile modification of the weak gel was very weak in the quartz sand pack. It was the shear fracture of porous media that mainly affected the properties and weakened the in-depth profile modification of the weak gel.展开更多
In this paper, a planar three layer quasisteady laminar flow model is proposed in a cough machine which simulates mucous gel transport in model trachea due to mild forced expiration. The flow is governed by the time d...In this paper, a planar three layer quasisteady laminar flow model is proposed in a cough machine which simulates mucous gel transport in model trachea due to mild forced expiration. The flow is governed by the time dependent pressure gradient generated in trachea due to mild forced expiration. Mucous gel is represented by a viscoelastic Voigt element whereas sol phase fluid and air are considered as Newtonian fluids. For fixed airflow rate, it is shown that when the viscosity of mucous gel is small, mucous gel transport decreases as the elastic modulus increases. However, elastic modulus has negligible effect on large gel viscosity. It is also shown that for fixed airflow rate and fixed airway dimension, mucous gel transport increases with the thickness of sol phase fluid and this increase is further enhanced as the viscosity of sol phase fluid decreases. The effect of surfactant is studied by considering sol phase as surfactant layer which causes slip at the wall and interface of sol phase and mucous gel. It is found that in the presence of surfactant mucous gel transport is enhanced.展开更多
The adsorption properties of a novel gel-type weak acid resin (110-H) for Pb2+ were investigated using chemical methods and IR spectrometry.The optimal adsorption condition of 110-H for Pb2+ is at pH=6.49 in HAc-NaAc ...The adsorption properties of a novel gel-type weak acid resin (110-H) for Pb2+ were investigated using chemical methods and IR spectrometry.The optimal adsorption condition of 110-H for Pb2+ is at pH=6.49 in HAc-NaAc medium and the statically saturated adsorption capacity is 485 mg/g at 298 K.Pb2+ adsorbed on 110-H resin can be eluted with 0.025 mol/L HCl quantificationally.The adsorption rate constants determined under the temperatures of 288,298,308 and 318 K are 2.46×10-5,3.82×10-5,4.46×10-5 and 5.71×10-5 s-1,respectively.The apparent activation energy,Ea,is 18.1 kJ/mol and the thermodynamic parameters of adsorption,ΔH=20.9 kJ/mol,ΔS=161 J/(mol.K) and ΔG298 K =-48.0 kJ/mol,respectively.The adsorption behavior of 110-H resin for Pb2+ accords with the Langmuir isotherm.Infrared spectra show that the oxygen atoms of the functional group of resin coordinate with Pb2+ to form the coordination bands.展开更多
Hybrid organic-inorganic polymer nanocomposites incorporating organically modified montmorillonite (MMT) and ultra-high molecular weight polyethylene (UHMWPE) were examined. UHMWPE/MMT hybrid nanocomposites were prepa...Hybrid organic-inorganic polymer nanocomposites incorporating organically modified montmorillonite (MMT) and ultra-high molecular weight polyethylene (UHMWPE) were examined. UHMWPE/MMT hybrid nanocomposites were prepared using gel and pressure-induced flow(PIF) processing methods at a gel weight concentration of 8% UHMWPE with various organoclay contents (0, 0.4, 0.8, 1.2, and 1.6 parts per hundred parts). The interlayer properties of the nanocomposites were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The thermal and mechanical interfacial properties of the nanocomposites were investigated through thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and the use of a universal test machine (UTM). TEM indicates that the nanocomposites are formed upon dispersion of MMT in the polymer matrix. From the DSC, TGA, and DMA results, we find that the thermal stability of the UHMWPE nanocomposites increases as the MMT content increases. The nanocomposites show higher tensile strengths than pure UHMWPE gel sheet. These findings indicate that the interfacial and mechanical properties are improved by the addition of MMT and PIF processing.展开更多
The study on the criteria used to distinguish floc sedimentation and gel-like network sedimentation of cohesive fine-grained sediment in a turbulent flow has rarely been carried out. In this preliminary study, we deri...The study on the criteria used to distinguish floc sedimentation and gel-like network sedimentation of cohesive fine-grained sediment in a turbulent flow has rarely been carried out. In this preliminary study, we derive three criteria to distinguish these two different sedimentation phases by considering the comparison of the time that a characteristic floc takes to settle through mean distance between characteristic flocs and the time that it takes to move through the same distance under the influence of a turbulent flow. These criteria incorporate physical and chemical factors that have been verified to have some influences on the sediment flocculation in some published literatures, and a simple analysis result is found to be consistent with our qualitative understandings of flocculation phenomenon of cohesive fine-grained sediment.展开更多
A new method for the determination of trace non-rare earth elements in high purity rare earth oxides by ICP-AES with preconcentration on an active carbon-silica gel microcolumn in a flow injection system is described ...A new method for the determination of trace non-rare earth elements in high purity rare earth oxides by ICP-AES with preconcentration on an active carbon-silica gel microcolumn in a flow injection system is described in this paper. Experimental parameters such as pH, flow rate,reagent concentration,length of reaction coil,eluent acidity,etc. were optimized. In the buffer solution of NH3. H2O/NH4Cl at pH 4. 6,Al,Cr,Cu,Fe, Pb, V and Zn can be preconcentrated and then eluted with 4. 5 mol/L nitric acid utilizing stop-flow technique. The enrichment factors were in range of 8. 1 ̄12. 6 with detection limits of μg/m level ,and the RSD with metals at μg/g level were 2. 3 ̄5. 0% (n= 7). The method proposed can reduce the matrix interference effectively , and has been applied to the determination of non-rare earth metals atμg/g level in high purity Eu2O3 with satisfactory results.展开更多
文摘Two sand packs were filled with fine glass beads and quartz sand respectively. The characteristics of crosslinked polymer flowing through the sand packs as well as the influence of shear fracture of porous media on the indepth profile modification of the weak gel generated from the crosslinked polymer were investigated. The results indicated that under the dynamic condition crosslinking reaction happened in both sand packs, and the weak gels in these two cases became small gel particles after water flooding. The differences were: the dynamic gelation time in the quartz sand pack was longer than that in the glass bead pack. Residual resistance factor (FRR) caused by the weak gel in the quartz sand pack was smaller than that in the glass bead pack. The weak gel became gel particles after being scoured by subsequent flood water. A weak gel with uniform apparent viscosity and sealing characteristics was generated in every part of the glass bead pack, which could not only move deeply into the sand pack but also seal the high capacity channels again when it reached the deep part. The weak gel performed in-depth profile modification in the glass bead pack, while in the quartz sand pack, the weak gel was concentrated with 100 cm from the entrance of the sand pack. When propelled by the subsequent flood water, the weak gel could move towards the deep part of the sand pack but then became tiny gel particles and could not effectively seal the high capacity channels there. The in-depth profile modification of the weak gel was very weak in the quartz sand pack. It was the shear fracture of porous media that mainly affected the properties and weakened the in-depth profile modification of the weak gel.
文摘In this paper, a planar three layer quasisteady laminar flow model is proposed in a cough machine which simulates mucous gel transport in model trachea due to mild forced expiration. The flow is governed by the time dependent pressure gradient generated in trachea due to mild forced expiration. Mucous gel is represented by a viscoelastic Voigt element whereas sol phase fluid and air are considered as Newtonian fluids. For fixed airflow rate, it is shown that when the viscosity of mucous gel is small, mucous gel transport decreases as the elastic modulus increases. However, elastic modulus has negligible effect on large gel viscosity. It is also shown that for fixed airflow rate and fixed airway dimension, mucous gel transport increases with the thickness of sol phase fluid and this increase is further enhanced as the viscosity of sol phase fluid decreases. The effect of surfactant is studied by considering sol phase as surfactant layer which causes slip at the wall and interface of sol phase and mucous gel. It is found that in the presence of surfactant mucous gel transport is enhanced.
基金Project (Y404279) supported by the Natural Science Foundation of Zhejiang Province, China
文摘The adsorption properties of a novel gel-type weak acid resin (110-H) for Pb2+ were investigated using chemical methods and IR spectrometry.The optimal adsorption condition of 110-H for Pb2+ is at pH=6.49 in HAc-NaAc medium and the statically saturated adsorption capacity is 485 mg/g at 298 K.Pb2+ adsorbed on 110-H resin can be eluted with 0.025 mol/L HCl quantificationally.The adsorption rate constants determined under the temperatures of 288,298,308 and 318 K are 2.46×10-5,3.82×10-5,4.46×10-5 and 5.71×10-5 s-1,respectively.The apparent activation energy,Ea,is 18.1 kJ/mol and the thermodynamic parameters of adsorption,ΔH=20.9 kJ/mol,ΔS=161 J/(mol.K) and ΔG298 K =-48.0 kJ/mol,respectively.The adsorption behavior of 110-H resin for Pb2+ accords with the Langmuir isotherm.Infrared spectra show that the oxygen atoms of the functional group of resin coordinate with Pb2+ to form the coordination bands.
基金National Natural Science Foundations of China (No. 50833002, No. 20774018)
文摘Hybrid organic-inorganic polymer nanocomposites incorporating organically modified montmorillonite (MMT) and ultra-high molecular weight polyethylene (UHMWPE) were examined. UHMWPE/MMT hybrid nanocomposites were prepared using gel and pressure-induced flow(PIF) processing methods at a gel weight concentration of 8% UHMWPE with various organoclay contents (0, 0.4, 0.8, 1.2, and 1.6 parts per hundred parts). The interlayer properties of the nanocomposites were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The thermal and mechanical interfacial properties of the nanocomposites were investigated through thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and the use of a universal test machine (UTM). TEM indicates that the nanocomposites are formed upon dispersion of MMT in the polymer matrix. From the DSC, TGA, and DMA results, we find that the thermal stability of the UHMWPE nanocomposites increases as the MMT content increases. The nanocomposites show higher tensile strengths than pure UHMWPE gel sheet. These findings indicate that the interfacial and mechanical properties are improved by the addition of MMT and PIF processing.
文摘The study on the criteria used to distinguish floc sedimentation and gel-like network sedimentation of cohesive fine-grained sediment in a turbulent flow has rarely been carried out. In this preliminary study, we derive three criteria to distinguish these two different sedimentation phases by considering the comparison of the time that a characteristic floc takes to settle through mean distance between characteristic flocs and the time that it takes to move through the same distance under the influence of a turbulent flow. These criteria incorporate physical and chemical factors that have been verified to have some influences on the sediment flocculation in some published literatures, and a simple analysis result is found to be consistent with our qualitative understandings of flocculation phenomenon of cohesive fine-grained sediment.
文摘A new method for the determination of trace non-rare earth elements in high purity rare earth oxides by ICP-AES with preconcentration on an active carbon-silica gel microcolumn in a flow injection system is described in this paper. Experimental parameters such as pH, flow rate,reagent concentration,length of reaction coil,eluent acidity,etc. were optimized. In the buffer solution of NH3. H2O/NH4Cl at pH 4. 6,Al,Cr,Cu,Fe, Pb, V and Zn can be preconcentrated and then eluted with 4. 5 mol/L nitric acid utilizing stop-flow technique. The enrichment factors were in range of 8. 1 ̄12. 6 with detection limits of μg/m level ,and the RSD with metals at μg/g level were 2. 3 ̄5. 0% (n= 7). The method proposed can reduce the matrix interference effectively , and has been applied to the determination of non-rare earth metals atμg/g level in high purity Eu2O3 with satisfactory results.