期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
FINITE DIFFERENCE METHOD OF FIRST BOUNDARY PROBLEM FOR QUASILINEAR PARABOLIC SYSTEMS(Continued) 被引量:3
1
作者 周毓麟 沈隆钧 韩臻 《Science China Mathematics》 SCIE 1991年第4期405-418,共14页
In this paper, we consider the existence, uniqueness and convergence of weak and strongimplicit difference solution for the first boundary problem of quasilinear parabolic system: u_t=(-1)^(M+1)A(x,t,u,…,u_x^(M-1))u_... In this paper, we consider the existence, uniqueness and convergence of weak and strongimplicit difference solution for the first boundary problem of quasilinear parabolic system: u_t=(-1)^(M+1)A(x,t,u,…,u_x^(M-1))u_x^(2M)+f(x,t,u,…,u_x^(2M-1)), (x,t)∈Q_T={0<x<l, 0<t≤T}, (1) u_xk(0,t)=u_xk(l,t)=0,(k=0,1,…,M-1), 0<t≤T, (2) u(x,0) =ψ(x), 0≤x≤l, (3)where u, ψ and f are m-dimensional vector valued functions, A is an m×m positivelydefinite matrix and u_xk denotes ?~ku/?_xk. For this problem, the estimations of the differencesolution are obtained. As h→0, △t→0, the difference solution converges weakly in W_2^(2M,1) (QT)to the unique generalized solution u(x,t)∈W_2^(2M,1)(QT) of problems (1), (2), (3). Especially,a favorable restriction condition to the step lengths △t and h for explicit and weak implicitschemes is found. 展开更多
关键词 finite difference method QUASILINEAR parabolie system weak implicit scheme strong implicit scheme convergence condition EXISTENCE and uniqueness.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部