期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Weak Pullback Attractors for Asymptotically Upper Semicompact Nonautonomous Multivalued Semiflow
1
作者 李挺 廖公夫 《Northeastern Mathematical Journal》 CSCD 2006年第4期379-382,共4页
1 IntroductionIn this paper we study the existence of pullback attractors for multivalued nonautonomous and multivalued random semiflow. In [1] and [2], the authors have proved the existence of pullback attractors of ... 1 IntroductionIn this paper we study the existence of pullback attractors for multivalued nonautonomous and multivalued random semiflow. In [1] and [2], the authors have proved the existence of pullback attractors of multivalued nonautonomous semiflow (random semiflow) under the assumption of the existence of compact absorbing set. In [3], the authors have proved the existence of pullback attractors of multivalued nonautonomous semiflow and random semiflow under the assumptions of uniformly pullback asymptotically upper semicompact and closed graph. In [4], the authors consider the existence of pullback attractor of singlevalued nonautonomous semiflow and random semiflow under the assumption of pullback asymptotic compactness. Instead of these assumptions, we consider multivalued nonautonomous semiflow and multivalued random semiflow with weak pullback asymptotic upper semi-compactness and prove the existence of pullback attractors. 展开更多
关键词 weak pullback attractor asymptotically upper semicompact absorbing set
下载PDF
DYNAMICS OF THE STOCHASTIC g-NAVIER-STOKES EQUATIONS DRIVEN BY NONLINEAR NOISE
2
作者 晏涛 张露 +1 位作者 邹爱红 舒级 《Acta Mathematica Scientia》 SCIE CSCD 2023年第5期2108-2120,共13页
This paper deals with the asymptotic behavior of solutions of the stochastic g-Navier-Stokes equation driven by nonlinear noise.The existence and uniqueness of weak pullback mean random attractors for the equation in ... This paper deals with the asymptotic behavior of solutions of the stochastic g-Navier-Stokes equation driven by nonlinear noise.The existence and uniqueness of weak pullback mean random attractors for the equation in Bochner space is proven for when the diffusion terms are Lipschitz nonlinear functions.Furthermore,we also establish the existence of invariant measures for the equation. 展开更多
关键词 non-Newtonian fuid weak pullback attractor mean random dynamical system nonlinear noise invariant measure
下载PDF
非柱形区域上时滞p-Laplace方程解的长时间行为
3
作者 李心 王春燕 《河南科技大学学报(自然科学版)》 CAS 北大核心 2023年第3期96-104,I0007,共10页
为了深入研究微分动力系统中p-Laplace方程的性质,讨论一类定义在同胚区域上带有时滞项的p-Laplace方程的长时间性态问题。首先,为了克服非柱形区域上区域随时间变化带来的困难,利用同胚坐标变换将非柱形区域转换成柱形区域,并建立柱形... 为了深入研究微分动力系统中p-Laplace方程的性质,讨论一类定义在同胚区域上带有时滞项的p-Laplace方程的长时间性态问题。首先,为了克服非柱形区域上区域随时间变化带来的困难,利用同胚坐标变换将非柱形区域转换成柱形区域,并建立柱形区域上的一系列先验估计;随后,通过Faedo-Galerkin方法得到系统弱解的适定性结果;最后,利用能量方法证明系统的渐近紧性。结果表明:所讨论的非柱形区域上带时滞的p-Laplace方程存在唯一的拉回吸引子。 展开更多
关键词 微分动力系统 非柱形区域 P-LAPLACE方程 时滞项 弱解 拉回吸引子
下载PDF
带弱阻尼Navier-Stokes方程拉回吸引子的收敛性
4
作者 曹洁 黄兰 苏克勤 《数学物理学报(A辑)》 CSCD 北大核心 2022年第4期1173-1185,共13页
该文研究了带弱阻尼Navier-Stokes方程解的长时间动力学行为.在外力项及初值的适当假设条件下,利用Galerkin方法证明了弱解的整体适定性及正则性,并根据吸引子基本理论验证了拉回吸引子的存在性及收敛性.
关键词 拉回吸引子 NAVIER-STOKES方程 弱阻尼 上半连续性
下载PDF
受非线性白噪声驱动的随机非自治不可压缩非牛顿流体的弱拉回吸引子
5
作者 晏涛 邹爱红 +1 位作者 张露 舒级 《四川师范大学学报(自然科学版)》 CAS 2022年第3期349-355,共7页
考虑二维随机非自治不可压缩非牛顿流体在具有非线性扩散项的白噪声驱动下解的渐近行为.当扩散项为Lipschitz非线性函数时,证明该方程在Bochner空间中弱拉回均方随机吸引子的存在唯一性.
关键词 非牛顿流体 弱拉回吸引子 非线性扩散项 Bochner空间 白噪声
下载PDF
带有随机初值的复值Ginzburg-Landau方程的弱平均动力学
6
作者 陈章 李玲玉 《数学年刊(A辑)》 CSCD 北大核心 2022年第4期415-430,共16页
本文研究了无界域上的带有随机初值的复值Ginzburg-Landau方程.首先,基于解过程的全局适定性,建立了带有随机初值的Ginzburg-Landau方程的平均随机动力系统.然后,证明了弱拉回平均随机吸引子的存在唯一性以及随机吸引子的周期性,并将其... 本文研究了无界域上的带有随机初值的复值Ginzburg-Landau方程.首先,基于解过程的全局适定性,建立了带有随机初值的Ginzburg-Landau方程的平均随机动力系统.然后,证明了弱拉回平均随机吸引子的存在唯一性以及随机吸引子的周期性,并将其进一步推广到加权空间L2(Ω,Lσ2(R)). 展开更多
关键词 复值Ginzburg-Landau方程 随机初值 平均随机动力系统 弱拉回平均吸引子 加权空间
下载PDF
Well-posedness and dynamics of fractional Fitz Hugh-Nagumo systems on R^(N) driven by nonlinear noise
7
作者 Renhai Wang Boling Guo Bixiang Wang 《Science China Mathematics》 SCIE CSCD 2021年第11期2395-2436,共42页
This article is concerned with the well-posedness as well as long-term dynamics of a wide class of non-autonomous,non-local,fractional,stochastic Fitz Hugh-Nagumo systems driven by nonlinear noise defined on the entir... This article is concerned with the well-posedness as well as long-term dynamics of a wide class of non-autonomous,non-local,fractional,stochastic Fitz Hugh-Nagumo systems driven by nonlinear noise defined on the entire space RN.The well-posedness is proved for the systems with polynomial drift terms of arbitrary order as well as locally Lipschitz nonlinear diffusion terms by utilizing the pathwise and mean square uniform estimates.The mean random dynamical system generated by the solution operators is proved to possess a unique weak pullback mean random attractor in a Bochner space.The existence of invariant measures is also established for the autonomous systems with globally Lipschitz continuous diffusion terms.The idea of uniform tail-estimates of the solutions in the appropriate spaces is employed to derive the tightness of a family of probability distributions of the solutions in order to overcome the non-compactness of the standard Sobolev embeddings on RNas well as the lack of smoothing effect on one component of the solutions.The results of this paper are new even when the fractional Laplacian is replaced by the standard Laplacian. 展开更多
关键词 fractional Fitz Hugh-Nagumo system weak pullback mean random attractor invariant measure nonlinear noise unbounded domain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部