For economical reasons, wind turbine systems must be located in favourable sites generating a higher pro- ductivity. These are often located in areas with weak electric grid infrastructures. The constraints related to...For economical reasons, wind turbine systems must be located in favourable sites generating a higher pro- ductivity. These are often located in areas with weak electric grid infrastructures. The constraints related to this type of grids limit the penetration levels of wind energy. These constraints are mainly related to power quality in the grid as well as the economical aspects of the project. In this study, we take into account the slow voltage variations and the flicker phenomenon. The models used are based on the development of a set of relations derived from engineering knowledge related to both technical and economical points of view. The maximal penetration level of a fixed speed wind turbine system is determined for a given grid. The power control has been investigated to improve wind turbine system integration. Obtained results show the necessity to adapt technological choices to the requirements of weaker grids. Penetration levels and wind turbine cost may be greatly improved using variable speed systems.展开更多
The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive co...The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant.展开更多
This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optima...This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optimal voltage vector dynamically through the space vector plane.Therefore,the proposed DS-MPC strategy could ensure dynamic performance and steady-state performance as well.Also,the current control robustness can be improved through DS-MPC with disturbance observer(DO)based on the extended Kalman filter(EKF).The novelty of this control is that the current control with fast dynamic response can be realized in the weak grid,even if the grid voltages are greatly distorted.Simulation and hardware experiments on the weak grid validate the effectiveness of the proposed DS-MPC with the EKF observer approach.展开更多
Limited resources are available on the application of wind generation systems interconnected to weak powemetworks. With the need to further interface DG (distributed generation) including WG (wind generation) to w...Limited resources are available on the application of wind generation systems interconnected to weak powemetworks. With the need to further interface DG (distributed generation) including WG (wind generation) to weak networks, it is necessary to establish a means of determining what is the most efficient quantity of WG that can be applied in order to maintain stability in the network. This paper establishes a concept that can be applied to weak networks. The aim is to estimate how much WG can be installed on weak networks as well as establishing characteristic responses to generation loss without and with faulted conditions. The main contribution is a thorough understanding of weak network limitation proved to be the most critical parameter in these calculations.展开更多
The performance of DFIG-based wind generation systems that interconnected to solid networks is well understood and prevalent in Europe and North America. However, the application of these renewable generating stations...The performance of DFIG-based wind generation systems that interconnected to solid networks is well understood and prevalent in Europe and North America. However, the application of these renewable generating stations to weak network has been examined in very limited occasions. Weak networks have a range of limitations from system capacities to CFCT restrictions which would need to be well understood prior to wind energy integration. Of particular interest would be how much wind generation could be integrated into a weak network prior to increasing voltage and frequency stability issues brought about by penetration issues. This paper introduces a simple and practical approach based on the equal area criteria to investigate the stability of weak networks. Simulation results that are presented to show the proposed approach is a viable preliminary assessment tool to determine system stability on weak networks with wind power penetration.展开更多
新能源并网逆变器的自同步电压源控制技术对构建以新能源为主体的新型电力系统具有重大意义,然而当弱电网电压发生跌落时,传统的自同步控制方法在低电压穿越(low voltage ride through,LVRT)过程中会出现由于电网阻抗大、相角差大等引...新能源并网逆变器的自同步电压源控制技术对构建以新能源为主体的新型电力系统具有重大意义,然而当弱电网电压发生跌落时,传统的自同步控制方法在低电压穿越(low voltage ride through,LVRT)过程中会出现由于电网阻抗大、相角差大等引起的瞬态电流冲击大、弱电网电压无法维持稳定、电压-电流控制能力须相互平衡等一系列问题。推导了低电压跌落时弱电网电压矢量与弱电网阻抗、并网电流之间的关系以及影响因素,进而提出了一种基于暂稳态阻抗重塑的多状态跟随自同步电压源LVRT控制方法,通过稳态阻抗来平衡电压和电流之间的控制能力;通过暂态阻抗重塑保证了整个过程的电压与电流瞬态控制与平滑过渡能力。为了进一步保证弱网下跌落和恢复过渡过程的平滑切换与稳定运行,提出了基于多状态跟随的暂态控制策略,优先发出无功支撑电网电压,并补偿相角和幅值突变带来的瞬态过电压和过电流冲击,帮助电网电压平稳过渡。最后,在Matlab/Simulink中验证了所提控制方法的正确性与有效性。展开更多
文摘For economical reasons, wind turbine systems must be located in favourable sites generating a higher pro- ductivity. These are often located in areas with weak electric grid infrastructures. The constraints related to this type of grids limit the penetration levels of wind energy. These constraints are mainly related to power quality in the grid as well as the economical aspects of the project. In this study, we take into account the slow voltage variations and the flicker phenomenon. The models used are based on the development of a set of relations derived from engineering knowledge related to both technical and economical points of view. The maximal penetration level of a fixed speed wind turbine system is determined for a given grid. The power control has been investigated to improve wind turbine system integration. Obtained results show the necessity to adapt technological choices to the requirements of weaker grids. Penetration levels and wind turbine cost may be greatly improved using variable speed systems.
基金supported by National Natural Science Foundation Joint Key Project of China(2016YFB0900900).
文摘The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant.
文摘This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optimal voltage vector dynamically through the space vector plane.Therefore,the proposed DS-MPC strategy could ensure dynamic performance and steady-state performance as well.Also,the current control robustness can be improved through DS-MPC with disturbance observer(DO)based on the extended Kalman filter(EKF).The novelty of this control is that the current control with fast dynamic response can be realized in the weak grid,even if the grid voltages are greatly distorted.Simulation and hardware experiments on the weak grid validate the effectiveness of the proposed DS-MPC with the EKF observer approach.
文摘Limited resources are available on the application of wind generation systems interconnected to weak powemetworks. With the need to further interface DG (distributed generation) including WG (wind generation) to weak networks, it is necessary to establish a means of determining what is the most efficient quantity of WG that can be applied in order to maintain stability in the network. This paper establishes a concept that can be applied to weak networks. The aim is to estimate how much WG can be installed on weak networks as well as establishing characteristic responses to generation loss without and with faulted conditions. The main contribution is a thorough understanding of weak network limitation proved to be the most critical parameter in these calculations.
文摘The performance of DFIG-based wind generation systems that interconnected to solid networks is well understood and prevalent in Europe and North America. However, the application of these renewable generating stations to weak network has been examined in very limited occasions. Weak networks have a range of limitations from system capacities to CFCT restrictions which would need to be well understood prior to wind energy integration. Of particular interest would be how much wind generation could be integrated into a weak network prior to increasing voltage and frequency stability issues brought about by penetration issues. This paper introduces a simple and practical approach based on the equal area criteria to investigate the stability of weak networks. Simulation results that are presented to show the proposed approach is a viable preliminary assessment tool to determine system stability on weak networks with wind power penetration.
文摘新能源并网逆变器的自同步电压源控制技术对构建以新能源为主体的新型电力系统具有重大意义,然而当弱电网电压发生跌落时,传统的自同步控制方法在低电压穿越(low voltage ride through,LVRT)过程中会出现由于电网阻抗大、相角差大等引起的瞬态电流冲击大、弱电网电压无法维持稳定、电压-电流控制能力须相互平衡等一系列问题。推导了低电压跌落时弱电网电压矢量与弱电网阻抗、并网电流之间的关系以及影响因素,进而提出了一种基于暂稳态阻抗重塑的多状态跟随自同步电压源LVRT控制方法,通过稳态阻抗来平衡电压和电流之间的控制能力;通过暂态阻抗重塑保证了整个过程的电压与电流瞬态控制与平滑过渡能力。为了进一步保证弱网下跌落和恢复过渡过程的平滑切换与稳定运行,提出了基于多状态跟随的暂态控制策略,优先发出无功支撑电网电压,并补偿相角和幅值突变带来的瞬态过电压和过电流冲击,帮助电网电压平稳过渡。最后,在Matlab/Simulink中验证了所提控制方法的正确性与有效性。