We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hop...We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hopf algebra structure of H = End(F) whenever (F, J) is a fiber functor from category l to Vec and every X ∈ l has a right regular dual. To conclude, we give a weak reconstruction theorem for a kind of weak Hopf algebra.展开更多
Let R be a ring such that all left semicentral idempotents axe central and α a weakly rigid endomorphism of R. It is shown that the skew power series ring R[[x; α]] is right p.q.Baer if and only if R is right p.q.Ba...Let R be a ring such that all left semicentral idempotents axe central and α a weakly rigid endomorphism of R. It is shown that the skew power series ring R[[x; α]] is right p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R has a generalized join in I(R), where I(R) is the set of all idempotents of R.展开更多
文摘We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hopf algebra structure of H = End(F) whenever (F, J) is a fiber functor from category l to Vec and every X ∈ l has a right regular dual. To conclude, we give a weak reconstruction theorem for a kind of weak Hopf algebra.
基金National Natural Science Foundation of China (10171082), TRAPOYT the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China
文摘Let R be a ring such that all left semicentral idempotents axe central and α a weakly rigid endomorphism of R. It is shown that the skew power series ring R[[x; α]] is right p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R has a generalized join in I(R), where I(R) is the set of all idempotents of R.