期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Sparse Kernel Approximate Method for Fractional Boundary Value Problems
1
作者 Hongfang Bai Ieng Tak Leong 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1406-1421,共16页
In this paper,the weak pre-orthogonal adaptive Fourier decomposition(W-POAFD)method is applied to solve fractional boundary value problems(FBVPs)in the reproducing kernel Hilbert spaces(RKHSs)W_(0)^(4)[0,1] and W^(1)[... In this paper,the weak pre-orthogonal adaptive Fourier decomposition(W-POAFD)method is applied to solve fractional boundary value problems(FBVPs)in the reproducing kernel Hilbert spaces(RKHSs)W_(0)^(4)[0,1] and W^(1)[0,1].The process of the W-POAFD is as follows:(i)choose a dictionary and implement the pre-orthogonalization to all the dictionary elements;(ii)select points in[0,1]by the weak maximal selection principle to determine the corresponding orthonormalized dictionary elements iteratively;(iii)express the analytical solution as a linear combination of these determined dictionary elements.Convergence properties of numerical solutions are also discussed.The numerical experiments are carried out to illustrate the accuracy and efficiency of W-POAFD for solving FBVPs. 展开更多
关键词 weak pre-orthogonal adaptive Fourier decomposition(W-POAFD) weak maximal selection principle Fractional boundary value problems(FBVPs) Reproducing kernel Hilbert space(RKHS)
下载PDF
Penalized least squares estimation with weakly dependent data 被引量:2
2
作者 FAN JianQing QI Lei TONG Xin 《Science China Mathematics》 SCIE CSCD 2016年第12期2335-2354,共20页
In statistics and machine learning communities, the last fifteen years have witnessed a surge of high-dimensional models backed by penalized methods and other state-of-the-art variable selection techniques.The high-di... In statistics and machine learning communities, the last fifteen years have witnessed a surge of high-dimensional models backed by penalized methods and other state-of-the-art variable selection techniques.The high-dimensional models we refer to differ from conventional models in that the number of all parameters p and number of significant parameters s are both allowed to grow with the sample size T. When the field-specific knowledge is preliminary and in view of recent and potential affluence of data from genetics, finance and on-line social networks, etc., such(s, T, p)-triply diverging models enjoy ultimate flexibility in terms of modeling, and they can be used as a data-guided first step of investigation. However, model selection consistency and other theoretical properties were addressed only for independent data, leaving time series largely uncovered. On a simple linear regression model endowed with a weakly dependent sequence, this paper applies a penalized least squares(PLS) approach. Under regularity conditions, we show sign consistency, derive finite sample bound with high probability for estimation error, and prove that PLS estimate is consistent in L_2 norm with rate (s log s/T)~1/2. 展开更多
关键词 weakly dependent high-dimensional model oracle property model selection consistency penalized least squares
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部