Proper treatment of weak subgrade soil is very important to building a highway of good quality. We proposed an entropy-based multi-criterion group decision analysis method for a group of experts to evaluate alternativ...Proper treatment of weak subgrade soil is very important to building a highway of good quality. We proposed an entropy-based multi-criterion group decision analysis method for a group of experts to evaluate alternatives of weak subgrade treatment, with an aim to select the optimum technique which is technically, economically and socially viable. We used fuzzy theory to analyze multiple experts' evaluation on various factors of each alterative treatment. Different experts' evaluations are integrated by the group eigenvalue method. An entropy weight is introduced to minimize the negative influences of subjective human factors of experts. The optimum alternative is identified with ideal point diseriminant analysis to calculate the distance of each alternative to the ideal point and prioritize all alternatives according to their distances. A case study on a section of the Shiman Expressway verified that the proposed method can give a rational decision on the optimum method of weak subgrade treatment.展开更多
Filling velocity and thickness of soft layer are major factors affecting subgrade stability according to an example study by means of finite element stress method(FESM). A case is studied and shows that the subgrade w...Filling velocity and thickness of soft layer are major factors affecting subgrade stability according to an example study by means of finite element stress method(FESM). A case is studied and shows that the subgrade was slided because of excessive filling velocity. To determine a reasonable filling velocity is a key problem to a subgrade with marine soft soil.展开更多
The sliding forms of weak sloped and horizontal subgrades during the sliding process differ.In addition,the sliding form of weakly sloped subgrades exhibits considerable slippage and asymmetry.The accuracy of traditio...The sliding forms of weak sloped and horizontal subgrades during the sliding process differ.In addition,the sliding form of weakly sloped subgrades exhibits considerable slippage and asymmetry.The accuracy of traditional slice methods for computing the stability safety factor of weakly sloped subgrades is insufficient for a subgrade design.In this study,a novel modified Bishop method was developed to improve the accuracy of the stability safety factor for different inclination angles.The instability mechanism of the weakly sloped subgrade was considered in the proposed method using the“influential force”and“additional force”concepts.The“additional force”reflected the weight effect of the embankment fill,whereas the“influential force”reflected the effect of the potential energy difference.Numerical simulations and experimental tests were conducted to evaluate the advantages of the proposed modified Bishop method.Compared with the traditional slice method,the error between the proposed method and the exact value is less than 32.3%in calculating the safety factor.展开更多
基金the National Natural Science Foundation of China (No.50478090)the Key Plan of Science and Technology of Hubei Provincial Communication Department (No.2005jtkj361)
文摘Proper treatment of weak subgrade soil is very important to building a highway of good quality. We proposed an entropy-based multi-criterion group decision analysis method for a group of experts to evaluate alternatives of weak subgrade treatment, with an aim to select the optimum technique which is technically, economically and socially viable. We used fuzzy theory to analyze multiple experts' evaluation on various factors of each alterative treatment. Different experts' evaluations are integrated by the group eigenvalue method. An entropy weight is introduced to minimize the negative influences of subjective human factors of experts. The optimum alternative is identified with ideal point diseriminant analysis to calculate the distance of each alternative to the ideal point and prioritize all alternatives according to their distances. A case study on a section of the Shiman Expressway verified that the proposed method can give a rational decision on the optimum method of weak subgrade treatment.
基金Supported by Foundation of Innovation Project of Jilin University
文摘Filling velocity and thickness of soft layer are major factors affecting subgrade stability according to an example study by means of finite element stress method(FESM). A case is studied and shows that the subgrade was slided because of excessive filling velocity. To determine a reasonable filling velocity is a key problem to a subgrade with marine soft soil.
基金This study was sponsored by the National Natural Science Foundation of China(Grant No.51609071)the Fundamental Research Funds for the Central Universities(Nos.B200202087,B200204032).
文摘The sliding forms of weak sloped and horizontal subgrades during the sliding process differ.In addition,the sliding form of weakly sloped subgrades exhibits considerable slippage and asymmetry.The accuracy of traditional slice methods for computing the stability safety factor of weakly sloped subgrades is insufficient for a subgrade design.In this study,a novel modified Bishop method was developed to improve the accuracy of the stability safety factor for different inclination angles.The instability mechanism of the weakly sloped subgrade was considered in the proposed method using the“influential force”and“additional force”concepts.The“additional force”reflected the weight effect of the embankment fill,whereas the“influential force”reflected the effect of the potential energy difference.Numerical simulations and experimental tests were conducted to evaluate the advantages of the proposed modified Bishop method.Compared with the traditional slice method,the error between the proposed method and the exact value is less than 32.3%in calculating the safety factor.