期刊文献+
共找到5,506篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical properties and acoustic emission characteristics of soft rock with different water contents under dynamic disturbance 被引量:1
1
作者 Yujing Jiang Lugen Chen +4 位作者 Dong Wang Hengjie Luan Guangchao Zhang Ling Dong Bin Liang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期135-148,共14页
Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties... Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage. 展开更多
关键词 Dynamic disturbance soft rock Cyclic loading Acoustic emission Water content
下载PDF
Mechanism of high-preload support based on the NPR anchor cable in layered soft rock tunnels 被引量:1
2
作者 SUI Qiru HE Manchao +3 位作者 SHI Mengfan TAO Zhigang ZHAO Feifei ZHANG Xiaoyu 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1403-1418,共16页
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d... The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data. 展开更多
关键词 Tunnel engineering soft rock High-preload support NPR anchor cables
下载PDF
Theory,technology and application of grouted bolting in soft rock roadways of deep coal mines
3
作者 Hongpu Kang Jianwei Yang +4 位作者 Pengfei Jiang Fuqiang Gao Wenzhou Li Jiafeng Li Huiyuan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1463-1479,共17页
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous... The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated. 展开更多
关键词 deep coal mine soft rock roadway grouted bolting rock bolt and cable grouting material high-pressure splitting grouting collaborative control technology
下载PDF
Case study on the mechanics of NPR anchor cable compensation for large deformation tunnel in soft rock in the Transverse Mountain area,China
4
作者 LI Yong ZHENG Jing +3 位作者 HUO Shu-sen WANG Feng-nian HE Man-chao TAO Zhi-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2054-2069,共16页
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri... A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas. 展开更多
关键词 soft rock large deformation NPR anchor cable physical model numerical simulation compensation mechanics
下载PDF
Failure mechanism and safety control technology of a composite strata roadway in deep and soft rock masses:a case study
5
作者 ZHAO Chengwei ZHOU Hui +3 位作者 SUN Xiaoming ZHANG Yong MIAO Chengyu WANG Jian 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2427-2444,共18页
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe... The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways. 展开更多
关键词 3DEC Composite strata roadway soft rock NPR bolt and cable Asymmetric large deformation
下载PDF
The role of polyurethane foam compressible layer in the mechanical behaviour of multi-layer yielding supports for deep soft rock tunnels
6
作者 Haibo Wang Fuming Wang +3 位作者 Chengchao Guo Lei Qin Jun Liu Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4554-4569,共16页
The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not... The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels. 展开更多
关键词 Multi-layer yielding supports Polyurethane foam compressible layer Synergistic mechanism Large-scale model test Deep soft rock tunnels
下载PDF
Deformation mechanism of rock mass and prestressed anchor cable support technology of Haidong soft rock tunnel
7
作者 LEI Xiaotian TAO Zhigang +3 位作者 LIU Keyuan YANG Hong CAI Mingjiu FAN Xiaowei 《Journal of Mountain Science》 SCIE CSCD 2024年第12期4299-4322,共24页
The Haidong Tunnel is one of the four soft rock tunnels of the Central Yunnan Water Diversion Project(CYWDP),where large deformation hazards of soft rock occur frequently,which seriously affect construction safety.The... The Haidong Tunnel is one of the four soft rock tunnels of the Central Yunnan Water Diversion Project(CYWDP),where large deformation hazards of soft rock occur frequently,which seriously affect construction safety.The effect of highly prestressed anchor cable support was studied based on the active support test in the No.3 branch tunnel of Haidong Tunnel.Firstly,the geological conditions and failure causes were analyzed on the basis of the results of geological survey,in-situ test,and rock laboratory test.Then,the Mohr circle form of the highly prestressed anchor cable active support theory for the support of bedded rock mass was given in combination with the excavation compensation method.It is considered that the prestress active compensation value required for the bedded rock mass is larger than that for the homogeneous rock mass.The deformations of rock mass under both passive and active supports were analyzed by numerical simulations.Furthermore,the'pressure bubble'mechanical model for anchor cable support of bedded rock mass in Haidong Tunnel is given.Field monitoring results show that the highly prestressed anchor cable support can control rock mass deformation well,with a maximum deformation of about 200 mm.The prestressed anchor cable is effective in the bedded stratum,which makes the stress of rock mass uniform and reduces the risk of failure of steel arches due to local bias.Meanwhile,the expansion of plastic zone was efficiently controlled,which is of positive significance for the overall stability of rock mass. 展开更多
关键词 Central Yunnan Water Diversion Project Large deformation of soft rock Prestressed anchor cable Active support 'Pressure bubble'mechanical model
下载PDF
Deformation characteristics and damage ontologies of soft and hard composite rock masses under impact loading
8
作者 LI Jinhua ZHANG Tianyu +3 位作者 WU Baolin SU Peili YANG Yang WANG Pan 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1715-1727,共13页
As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study ... As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load. 展开更多
关键词 soft and hard composite rock mass Dynamic properties Split Hopkinson pressure bar(SHPB) Numerical simulation Intrinsic damage model
下载PDF
Wmic-GMTS and Wmic-GMERR criteria for micron-scale crack propagation in red-bed soft rocks under hydraulic action
9
作者 Guangjun Cui Chunhui Lan +2 位作者 Cuiying Zhou Zhen Liu Chang Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3641-3660,共20页
Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theo... Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action. 展开更多
关键词 Red-bed soft rocks Hydraulic action Micron-scale cracks Generalized maximum tangential stress (GMTS)criterion Generalized maximum energy release rate (GMERR)criterion Digital image correlation(DIC)
下载PDF
An elasto-plastic constitutive model for soft rock considering mobilization of strength 被引量:6
10
作者 李杭州 熊光东 赵桂平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期822-834,共13页
A new elasto-plastic constitutive model is presented in the framework of plasticity theory. The strength characteristics of a diatomaceous soft rock is investigated. The friction angle and cohesion of soft rock are mo... A new elasto-plastic constitutive model is presented in the framework of plasticity theory. The strength characteristics of a diatomaceous soft rock is investigated. The friction angle and cohesion of soft rock are mobilized as a function of plastic strain. A hyperbolic hardening function for the mobilized friction and a mixed parabolic and exponential equation for the mobilized cohesion are proposed. In view of the unified strength theory and the mobilizations of strength components, a yield function is given. A plastic potential function is determined by using the non-associated plastic flow rule. An elasto-plastic constitutive model is developed and verified. The results indicate that the proposed model can predict the behavior of soft rock accurately. The advantages of the proposed constitutive model are analyzed. The evidences support that the proposed constitutive model is a mixed hardening/softening model. A hump hardening/softening function for mobilized friction is extended to a more generalized condition. 展开更多
关键词 constitutive model mobilized strength component unified strength theory soft rock
下载PDF
Bolt-grouting combined support technology in deep soft rock roadway 被引量:12
11
作者 Chen Yanlong Meng Qingbin +2 位作者 Xu Guang Wu Haoshuai Zhang Guimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期777-785,共9页
Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined... Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed. 展开更多
关键词 Deep soft rock roadway Bolt-grouting support Numerical simulation Similar material simulation High stress
下载PDF
Viscoelasto-plastic rheological experiment under circular increment step load and unload and nonlinear creep model of soft rocks 被引量:21
12
作者 赵延林 曹平 +2 位作者 王卫军 万文 刘业科 《Journal of Central South University》 SCIE EI CAS 2009年第3期488-494,共7页
The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic str... The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic strain, visco-elastic strain, instantaneous plastic strain and visco-plastic strain. The result shows that instantaneous deformation modulus tends to increase with the increase of creep stress; soft rocks enhance the ability to resist instantaneous elastic deformation and instantaneous plastic deformation during the multi-level of load and unload in the cyclic process. In respect of specimen JC1099, the ratio of visco-elastic strain to visco-plastic strain varies from 3.15 to 6.58, and the ratio has decreasing tendency with stress increase as a whole; creep deformation tends to be a steady state at low stress level; soft rocks creep usually embodies accelerated creep properties at high stress level. With the damaging variable and the hardening function introduced, a nonlinear creep model of soft rocks is established, in which the decay creep is described by the nonlinear hardening function H of viscidity coefficient. The model can describe the accelerated creep of soft rocks since the nonlinear damaging evolvement variable D of deformation parameter of rocks is introduced. Three stages of soft rocks creep can be described with the uniform creep equation in the nonlinear creep model. With this nonlinear creep model applied to the creep experiments of the ore-rock of Jinchuan Mine III, the nonlinear creep model's curves are in good agreement with experimental data. 展开更多
关键词 rheological experiment nonlinear creep damaging HARDENING soft rocks
下载PDF
Deformation characteristics of surrounding rock of broken and soft rock roadway 被引量:26
13
作者 WANG Jin-xi LIN Ming-yue +1 位作者 TIAN Duan-xin ZHAO Cun-liang 《Mining Science and Technology》 EI CAS 2009年第2期205-209,共5页
A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformat... A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations. 展开更多
关键词 soft rock roadway broken surrounding rock similarity simulation numerical simulation deformation characteristics
下载PDF
Deformation mechanism and excavation process of large span intersection within deep soft rock roadway 被引量:24
14
作者 LI Guofeng, HE Manchao, ZHANG Guofeng, TAO Zhigang Institute of Geotechnical Engineering, China University of Mining & Technology, Beijing 100083, China 《Mining Science and Technology》 EI CAS 2010年第1期28-34,共7页
The FLAC3D software was used to simulate and analyze numerically the displacement, stress and plastic zone distribu-tion characteristics of a large span intersection in a deep soft rock roadway after the surrounding r... The FLAC3D software was used to simulate and analyze numerically the displacement, stress and plastic zone distribu-tion characteristics of a large span intersection in a deep soft rock roadway after the surrounding rock was excavated. Our simula-tion results show that there are two kinds of dominating factors affecting roadway stability at points of intersection, one is the angle between horizontal stress and axial direction of the roadway and the other are the angles at the points of intersection. These results are based on a study we carried out as follows: first, we analyzed the failure mechanism of a large span intersection and then we built a mechanical model of a rock pillar at one of the points of intersection. At the end of this analysis, we obtained the failure characteristics of the critical parts on the large span intersection. Given these failure characteristics, we proposed a new supporting method, i.e., a Double-Bolt Control Technology (DBCT). By way of numerical simulation, DBCT can effectively control the deformation of the surrounding rock at the points of intersection in roadways. 展开更多
关键词 DEEP soft rock JUNCTION numerical simulation
下载PDF
Compensation excavation method control for large deformation disaster of mountain soft rock tunnel 被引量:20
15
作者 Manchao He Qiru Sui +2 位作者 Mengnan Li Zhijiao Wang Zhigang Tao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期951-963,共13页
In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the lar... In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the large deformation problems imposed by complex geological conditions of mountain soft rock tunneling.Hence,the compensation excavation method has been proposed to solve this issue under the consideration that all damage in tunneling originates from the excavation.It uses supportive strategies to counteract the excavation effects successfully.This paper provides an overview of the fundamental ideas of the compensation excavation method,methodologies,and field applications.The scientific validity and feasibility of the compensation excavation method were investigated through the practical engineering study of the Muzhailing and Changning tunnels. 展开更多
关键词 Tunnel engineering Excavation method soft rock Large deformation Compensation excavation method
下载PDF
Application of a combined supporting technology with U-shaped steel support and anchor-grouting to surrounding soft rock reinforcement in roadway 被引量:17
16
作者 王辉 郑朋强 +1 位作者 赵文娟 田洪铭 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1240-1250,共11页
Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not on... Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not only affects the engineering safety critically but also improves the maintenance costs. This paper takes the main rail roadway with severely deformation in China's Zaoquan coal mine as an example to study the long-term deformation tendency and damage zone by means of in-situ deformation monitoring and acoustic wave testing technique. A three-dimensional finite element model reflecting the engineering geological condition and initial design scheme is established by ABAQUS. Then, on the basis of field monitoring deformation data, the surrounding rock geotechnical and theological parameters of the roadway are obtained by back analysis. A combined supporting technology with U-shaped steel support and anchor-grouting is proposed for the surrounding soft rock. The numerical simulation of the combined supporting technology and in-situ deformation monitoring results show that the soft rock surrounding the roadway has been held effectively. 展开更多
关键词 soft rock roadway rheological effect supporting technology numerical simulation REINFORCEMENT
下载PDF
Failure mechanism of bolting support and high-strength bolt-grouting technology for deep and soft surrounding rock with high stress 被引量:16
17
作者 李术才 王洪涛 +5 位作者 王琦 江贝 王富奇 郭念波 刘文江 任尧喜 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期440-448,共9页
In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i... In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines. 展开更多
关键词 high stress soft rock bolting support interface dilation failure mechanism high strength bolt-grouting technology
下载PDF
Numerical modeling of large deformation and nonlinear frictional contact of excavation boundary of deep soft rock tunnel 被引量:6
18
作者 Xin Chen Hongyun Guo +2 位作者 Pei Zhao Xi Peng Shizhi Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期421-428,共8页
Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During t... Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model. 展开更多
关键词 deep soft rock tunnel large deformation contact problem Lagrange multiplier method
下载PDF
Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks 被引量:14
19
作者 Xiaoming Sun Chengwei Zhao +3 位作者 Yong Zhang Feng Chen Shangkun Zhang Kaiyuan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期291-302,共12页
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ... To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks. 展开更多
关键词 Failure mechanism Physical model test 3DEC Layered soft rocks Large deformation
下载PDF
Instability mechanism and control technology of soft rock roadway affected by mining and high confined water 被引量:12
20
作者 Li Guichen Jiang Zuohan +3 位作者 Lv Chuangxin Huang Chao Chen Gui Li Mingyuan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期573-580,共8页
Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the com... Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock. 展开更多
关键词 High confined water soft rock roadway Instability mechanism Control technology
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部