The Hamiltonian of the quantum rod (QR) with an ellipsoidal boundary is given after a coordinate transformation. Using the linear-combination operator and unitary transformation methods, the vibrational frequency an...The Hamiltonian of the quantum rod (QR) with an ellipsoidal boundary is given after a coordinate transformation. Using the linear-combination operator and unitary transformation methods, the vibrational frequency and the ground-state energy of weak-coupling polarons are obtained. Numerical results illustrate that the vibrational frequency increases with the decrease of the effective radius R0 of the ellipsoidal parabolic potential and the aspect ratio e of the ellipsoid, and that the ground-state energy increases with the decrease of the effective radius R0 and the electron-LO-phonon coupling strength α. In addition, the ground-state energy decreases with increasing aspect ratio e within 0 〈 e 〈 1 and reaches a minimum when e = 1, and then increases with increasing e for e 〉 1.展开更多
The vibrational frequency(VF), the ground state(GS) energy and the GS binding energy of the weak electron-phonon coupling polaron in a quantum well(QW) with asymmetrical Gaussian confinement potential are calculated. ...The vibrational frequency(VF), the ground state(GS) energy and the GS binding energy of the weak electron-phonon coupling polaron in a quantum well(QW) with asymmetrical Gaussian confinement potential are calculated. First we introduce the linear combination operator to express the momentum and coordinates in the Hamilton and then operate the system Hamilton using unitary transformation. The results indicate the relations of the quantities(the VF, the absolute value of GS energy and the GS binding energy) and the parameters(the QW barrier height and the range of Gaussian confinement potential in the growth direction of the QW).展开更多
We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime...We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime of the rotating-wave approximation.展开更多
We generalize the Wu-Yang strong-coupling theory to solve analytically periodically driven two-level systems in the weak-coupling and low-frequency regimes for single- and multi-period periodic driving of continuous-w...We generalize the Wu-Yang strong-coupling theory to solve analytically periodically driven two-level systems in the weak-coupling and low-frequency regimes for single- and multi-period periodic driving of continuous-wave-type and pulse-type including ultrashort pulses of a few cycles.We also derive a general formula of the AC Stark shift suitable for such diverse situations.展开更多
Introduction of the photothermal effect into transition-metal oxide photoanodes has been proven to be an effective method to improve the photoelectrochemical(PEC)water-splitting performance.However,the precise role of...Introduction of the photothermal effect into transition-metal oxide photoanodes has been proven to be an effective method to improve the photoelectrochemical(PEC)water-splitting performance.However,the precise role of the photothermal effect on the PEC performance of photoanodes is still not well understood.Herein,spinel-structured ZnFe_(2)O_(4)nanoparticles are deposited on the surface of hematite(Fe_(2)O_(3)),and the ZnFe_(2)O_(4)/Fe_(2)O_(3)photoanode achieves a high photocurrent density of 3.17 mA cm^(-2)at 1.23 V versus a reversible hydrogen electrode(VRHE)due to the photothermal effect of ZnFe_(2)O_(4).Considering that the hopping of electron small polarons induced by oxygen vacancies is thermally activated,we clarify that the main reason for the enhanced PEC performance via the photothermal effect is the promoted mobility of electron small polarons that are bound to positively charged oxygen vacancies.Under the synergistic effect of oxygen vacancies and the photothermal effect,the electron conductivity and PEC performance are significantly improved,which provide fundamental insights into the impact of the photothermal effect on the PEC performance of small polaron-type semiconductor photoanodes.展开更多
We present an approximate analytical solution to periodically driven two-level system in the weak-coupling regime. The analytical solution is in good agreement with the exact numerical solution in resonance and near r...We present an approximate analytical solution to periodically driven two-level system in the weak-coupling regime. The analytical solution is in good agreement with the exact numerical solution in resonance and near resonance cases when Ω 〈 0.3ωa with Ω and ωa denoting the Rabi and transition frequencies respectively.展开更多
Lead halide hybrid perovskites(LHP)have emerged as one of the most promising photovoltaic materials for their remarkable solar energy conversion ability.The transportation of the photoinduced carriers in LHP could scr...Lead halide hybrid perovskites(LHP)have emerged as one of the most promising photovoltaic materials for their remarkable solar energy conversion ability.The transportation of the photoinduced carriers in LHP could screen the defect recombination with the help of the large polaron formation.However,the physical insight of the relationship between the superior optical-electronic performance of perovskite and its polaron dynamics related to the electron-lattice strong coupling induced by the substitution engineering is still lack of investigation.Here,the bandgap modulated thin films ofα-FAPbI_(3)with different element substitution is investigated by the time resolved Terahertz spectroscopy.We find the polaron recombination dynamics could be prolonged in LHP with a relatively smaller bandgap,even though the formation of polaron will not be affected apparently.Intuitively,the large polaron mobility in(FAPb I_(3))0.95(MAPbI_(3))0.05thin film is~30%larger than that in(FAPb I_(3))0.85(MAPbBr_(3))0.15.The larger mobility in(FAPb I_(3))0.95(MAPb I_(3))0.05could be assigned to the slowing down of the carrier scattering time.Therefore,the physical origin of the higher carrier mobility in the(FAPb I_(3))0.95(MAPbI_(3))0.05should be related with the lattice distortion and enhanced electron–phonon coupling induced by the substitution.In addition,(FAPbI_(3))0.95(MAPbI_(3))0.05will lose fewer active carriers during the polaron cooling process than that in(FAPb I_(3))0.85(MAPbBr_(3)),indicating lower thermal dissipation in(FAPbI_(3))0.95(MAPbI_(3))0.05.Our results suggest that besides the smaller bandgap,the higher polaron mobility improved by the substitution engineering inα-FAPbI_(3)can also be an important factor for the high PCE of the black phaseα-FAPbI_(3)based solar cell devices.展开更多
We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess ch...We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.展开更多
The formation of Frohlich polarons in metal halide perovskites,arising from the charge carrier-longitudinal optical(LO)phonon coupling,has been proposed to explain their exceptional properties,but the effective identi...The formation of Frohlich polarons in metal halide perovskites,arising from the charge carrier-longitudinal optical(LO)phonon coupling,has been proposed to explain their exceptional properties,but the effective identification of polarons in these materials is still a challenging task.Herein,we theoretically present the infrared optical absorption of Frohlich polarons based on the Huang-Rhys model.We find that multiphonon overtones appear as the energy of the incident photons matches the multiple LO phonons,wherein the average phonon number of a polaron can be directly evaluated by the order of the strongest overtone.These multiphonon structures sensitively depend on the scale of electronic distribution in the ground state and the dimensionality of the perovskite materials,revealing the effective modulation of competing processes between polaron formation and carrier cooling.Moreover,the order of the strongest overtone shifts to higher ones with temperature,providing a potential proof that the carrier mobility is affected by LO phonon scattering.The present model not only suggests a direct way to verify Frohlich polarons but also enriches our understanding of the properties of polarons in metal halide perovskites.展开更多
We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of...We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.展开更多
As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites re...As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites rely on the cubic/orthorhombic structures, while the hexagonal structure is much less studied. Here first-principles calculations are employed to investigate the magnetic and electronic structures of La-doped 4H-SrMnO_(3). By systematically analyzing the two kinds of La-doped positions, our calculations predict that the doped electron with lattice distortion would prefer to form polarons, which contribute to the local magnetic phase transition, nonzero net magnetization, and semiconducting behavior. In addition, the energy gap decreases gradually with increasing doping concentration, indicating a tendency of insulator–metal transition.展开更多
The binding energy of a bound polaron in a finite parabolic quantum well is studied theoretically by a fractional- dimensional variational method. The numerical results for the binding energies of the bound polaron an...The binding energy of a bound polaron in a finite parabolic quantum well is studied theoretically by a fractional- dimensional variational method. The numerical results for the binding energies of the bound polaron and longitudinal-optical phonon contributions in GaAs/Al0.3 Ga0.7 AS parabolic quantum well structures are obtained as functions of the well width. It is shown that the binding energies of the bound polaron are obviously reduced by the electron-phonon interaction and the phonon contribution is observable and cannot be neglected.展开更多
The ground-state energy and the average number of virtual phonons around the electron of a hydrogenic impurity confined in a parabolic quantum dot are calculated using the squeezed-state variational approach,which is ...The ground-state energy and the average number of virtual phonons around the electron of a hydrogenic impurity confined in a parabolic quantum dot are calculated using the squeezed-state variational approach,which is based on two successive canonical transformations and uses a displaced-oscillator type unitary transformation to deal with the bilinear terms,which are usually neglected.Numerical calculations are carried out in order to study the relation between the ground-state energy and the average number of virtual phonons around the electron of a bound polaron in a parabolic quantum dot with the Coulomb binding parameter.The electron-phonon coupling constant and the confinement length are derived.展开更多
The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combinati...The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combination operator and the perturbation method. The influence of the interaction between phonons with different wave vectors in the recoil process on the ground state energy of the bound polaron is discussed. Numerical calculations are performed,and the results show that the ground state energy increases significantly as the effective confinement length of the quantum dot decreases,considering of the interaction between phonons. When l0〉1.0, the influence of the interaction between phonons on the ground state energy cannot be ignored.展开更多
A 2D electron-longitudinal-acoustic-phonon interaction Hamiltonian is derived and used to calculate the groundstate energy of the acoustic polarons in two dimensions. The numerical results for the ground-state energy ...A 2D electron-longitudinal-acoustic-phonon interaction Hamiltonian is derived and used to calculate the groundstate energy of the acoustic polarons in two dimensions. The numerical results for the ground-state energy of the acoustic polarons in two and three dimensions are obtained. The 3D results agree with those obtained by using the Feynman path-integral approach. It is found that the critical coupling constant of the transition from the quasifree state to the self-trapped state in the 2D case is much smaller than in the 3D case for a given cutoff wave-vector. The theory has been used to judge the possibility of the self-trapping for several real materials. The results indicate that the self-trappings of the electrons in AlN and the holes in AlN and GaN are expected to be observed in 2D systems.展开更多
The variational method is applied to the study of charge transfer in dry DNA by using an extended Holstein small polaron model in two cases: the site-dependent flnite-chain discrete case and the site-independent cont...The variational method is applied to the study of charge transfer in dry DNA by using an extended Holstein small polaron model in two cases: the site-dependent flnite-chain discrete case and the site-independent continuous one. The treatments in the two cases are proven to be consistent in theory and calculation. Discrete and continuous treatments of Holstein model both can yield a nonlinear equation to describe the charge migration in an actual long-range DNA chain. Our theoretical results of binding energy Eb, probability amplitude of charge carrier Ф and the relation between energy and charge-lattice coupling strength are in accordance with the available experimental results and recent theoretical calculations.展开更多
The polaron effect on the optical rectification in spherical quantum dots with a shallow hydrogenic impurity in the presence of electric field is theoretically investigated by taking into account the interactions of t...The polaron effect on the optical rectification in spherical quantum dots with a shallow hydrogenic impurity in the presence of electric field is theoretically investigated by taking into account the interactions of the electrons with both confined and surface optical phonons. Besides, the interaction between impurity and phonons is also considered. Numerical calculations are presented for typical Zn1-xCdxSe/ZnSe material. It is found that the polaronic effect or electric field leads to the redshifted resonant peaks of the optical rectification coefficients. It is also found that the peak values of the optical rectification coefficients with the polaronic effect are larger than without the polaronic effect, especially for smaller Cd concentrations or stronger electric field.展开更多
We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contribution...We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contributions from various optical-phonon modes to the ground state energy as functions of the well width and Mg composition. In our calculations, we considered the effects of confined optical phonon modes, interface-optical phonon modes, and half-space phonon modes, as well as the anisotropy of the electron effective band mass, phonon frequency, and dielectric constant. Our numerical results indicate that the electron–optical phonon interactions importantly affect the polaronic energies in the ZnO/MgxZn1-xO quantum well. The electron–optical phonon interactions decrease the polaron energies. For quantum wells with narrower wells, the interface optical phonon and half-space phonon modes contribute more to the polaronic energies than the confined phonon modes. However, for wider quantum wells, the total contribution to the polaronic energy mainly comes from the confined modes. The contributions of the various phonon modes to the transition energy change differently with increasing well width. The contribution of the half-space phonons decreases slowly as the QW width increases, whereas the contributions of the confined and interface phonons reach a maximum at d ≈ 5.0 nm and then decrease slowly. However,the total contribution of phonon modes to the transition energy is negative and increases gradually with the QW width of d.As the composition x increases, the total contribution of phonons to the ground state energies increases slowly, but the total contributions of phonons to the transition energies decrease gradually. We analyze the physical reasons for these behaviors in detail.展开更多
基金supported by the National Natural Science Foundation of China (No. 10347004)the Science Research for the Colleges and Universities of Inner Mongolia Autonomous Region (No. NJzy08085)
文摘The Hamiltonian of the quantum rod (QR) with an ellipsoidal boundary is given after a coordinate transformation. Using the linear-combination operator and unitary transformation methods, the vibrational frequency and the ground-state energy of weak-coupling polarons are obtained. Numerical results illustrate that the vibrational frequency increases with the decrease of the effective radius R0 of the ellipsoidal parabolic potential and the aspect ratio e of the ellipsoid, and that the ground-state energy increases with the decrease of the effective radius R0 and the electron-LO-phonon coupling strength α. In addition, the ground-state energy decreases with increasing aspect ratio e within 0 〈 e 〈 1 and reaches a minimum when e = 1, and then increases with increasing e for e 〉 1.
基金supported by the National Science Foundation of China(Nos.11464033,11464034)
文摘The vibrational frequency(VF), the ground state(GS) energy and the GS binding energy of the weak electron-phonon coupling polaron in a quantum well(QW) with asymmetrical Gaussian confinement potential are calculated. First we introduce the linear combination operator to express the momentum and coordinates in the Hamilton and then operate the system Hamilton using unitary transformation. The results indicate the relations of the quantities(the VF, the absolute value of GS energy and the GS binding energy) and the parameters(the QW barrier height and the range of Gaussian confinement potential in the growth direction of the QW).
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575040, 90503010, 60478029, and 10634060, and by the State Key Basic Research Program under Grant No. 2005CB724508
文摘We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime of the rotating-wave approximation.
基金supported by the Natural Science Foundation of Jiangxi Province under Grant Nos.0612006 and 2007GZW0819the Scientific Research Foundation of the Education Department of Jiangxi Province under Grant No.[2007]191Funds from East China Jiaotong University
文摘We generalize the Wu-Yang strong-coupling theory to solve analytically periodically driven two-level systems in the weak-coupling and low-frequency regimes for single- and multi-period periodic driving of continuous-wave-type and pulse-type including ultrashort pulses of a few cycles.We also derive a general formula of the AC Stark shift suitable for such diverse situations.
基金This work was supported by the National Natural Science Foundation of China(51902297,52002361,52003300,and 22109120)the Zhejiang Provincial Natural Science Foundation of China(LQ21B030002)the fund of the Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education,and Hubei Key Laboratory of Catalysis and Materials Science.
文摘Introduction of the photothermal effect into transition-metal oxide photoanodes has been proven to be an effective method to improve the photoelectrochemical(PEC)water-splitting performance.However,the precise role of the photothermal effect on the PEC performance of photoanodes is still not well understood.Herein,spinel-structured ZnFe_(2)O_(4)nanoparticles are deposited on the surface of hematite(Fe_(2)O_(3)),and the ZnFe_(2)O_(4)/Fe_(2)O_(3)photoanode achieves a high photocurrent density of 3.17 mA cm^(-2)at 1.23 V versus a reversible hydrogen electrode(VRHE)due to the photothermal effect of ZnFe_(2)O_(4).Considering that the hopping of electron small polarons induced by oxygen vacancies is thermally activated,we clarify that the main reason for the enhanced PEC performance via the photothermal effect is the promoted mobility of electron small polarons that are bound to positively charged oxygen vacancies.Under the synergistic effect of oxygen vacancies and the photothermal effect,the electron conductivity and PEC performance are significantly improved,which provide fundamental insights into the impact of the photothermal effect on the PEC performance of small polaron-type semiconductor photoanodes.
基金The project supported by the Postdoctoral Science Foundation of China under Grant Nos.20060408878 and 2007RS4015Key Science Research Foundation of the Education Ministry of China,Natural Science Foundation of Hunan Province of China under Grant No.05JJ40007Key Science Research Foundation of the Education Department of Hunan Province under Grant No.07A057
文摘We present an approximate analytical solution to periodically driven two-level system in the weak-coupling regime. The analytical solution is in good agreement with the exact numerical solution in resonance and near resonance cases when Ω 〈 0.3ωa with Ω and ωa denoting the Rabi and transition frequencies respectively.
基金supported by the National Natural Science Foundation of China(Nos.92050203,61905264,61925507,61875211,61674023,62005296,and 62105347)the National Key R&D Program of China 2017YFE0123700+1 种基金Shanghai Pilot Program for Basic Research(22JC1403200)the CAS Interdisciplinary Innovation Team。
文摘Lead halide hybrid perovskites(LHP)have emerged as one of the most promising photovoltaic materials for their remarkable solar energy conversion ability.The transportation of the photoinduced carriers in LHP could screen the defect recombination with the help of the large polaron formation.However,the physical insight of the relationship between the superior optical-electronic performance of perovskite and its polaron dynamics related to the electron-lattice strong coupling induced by the substitution engineering is still lack of investigation.Here,the bandgap modulated thin films ofα-FAPbI_(3)with different element substitution is investigated by the time resolved Terahertz spectroscopy.We find the polaron recombination dynamics could be prolonged in LHP with a relatively smaller bandgap,even though the formation of polaron will not be affected apparently.Intuitively,the large polaron mobility in(FAPb I_(3))0.95(MAPbI_(3))0.05thin film is~30%larger than that in(FAPb I_(3))0.85(MAPbBr_(3))0.15.The larger mobility in(FAPb I_(3))0.95(MAPb I_(3))0.05could be assigned to the slowing down of the carrier scattering time.Therefore,the physical origin of the higher carrier mobility in the(FAPb I_(3))0.95(MAPbI_(3))0.05should be related with the lattice distortion and enhanced electron–phonon coupling induced by the substitution.In addition,(FAPbI_(3))0.95(MAPbI_(3))0.05will lose fewer active carriers during the polaron cooling process than that in(FAPb I_(3))0.85(MAPbBr_(3)),indicating lower thermal dissipation in(FAPbI_(3))0.95(MAPbI_(3))0.05.Our results suggest that besides the smaller bandgap,the higher polaron mobility improved by the substitution engineering inα-FAPbI_(3)can also be an important factor for the high PCE of the black phaseα-FAPbI_(3)based solar cell devices.
基金Project supported by the Ministry of Education,Science and Technological Development of the Republic of Serbiathe Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (Grant No.K2-2019-010)the Project within the Cooperation Agreement between the JINR,Dubna,Russian Federation and Ministry of Education and Science of the Republic of Serbia。
文摘We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.
基金the National Natural Science Foundation of China(Grant Nos.11674241 and 12174283)。
文摘The formation of Frohlich polarons in metal halide perovskites,arising from the charge carrier-longitudinal optical(LO)phonon coupling,has been proposed to explain their exceptional properties,but the effective identification of polarons in these materials is still a challenging task.Herein,we theoretically present the infrared optical absorption of Frohlich polarons based on the Huang-Rhys model.We find that multiphonon overtones appear as the energy of the incident photons matches the multiple LO phonons,wherein the average phonon number of a polaron can be directly evaluated by the order of the strongest overtone.These multiphonon structures sensitively depend on the scale of electronic distribution in the ground state and the dimensionality of the perovskite materials,revealing the effective modulation of competing processes between polaron formation and carrier cooling.Moreover,the order of the strongest overtone shifts to higher ones with temperature,providing a potential proof that the carrier mobility is affected by LO phonon scattering.The present model not only suggests a direct way to verify Frohlich polarons but also enriches our understanding of the properties of polarons in metal halide perovskites.
文摘We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.
基金supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant Nos.NY222167 and NY220005)。
文摘As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites rely on the cubic/orthorhombic structures, while the hexagonal structure is much less studied. Here first-principles calculations are employed to investigate the magnetic and electronic structures of La-doped 4H-SrMnO_(3). By systematically analyzing the two kinds of La-doped positions, our calculations predict that the doped electron with lattice distortion would prefer to form polarons, which contribute to the local magnetic phase transition, nonzero net magnetization, and semiconducting behavior. In addition, the energy gap decreases gradually with increasing doping concentration, indicating a tendency of insulator–metal transition.
文摘The binding energy of a bound polaron in a finite parabolic quantum well is studied theoretically by a fractional- dimensional variational method. The numerical results for the binding energies of the bound polaron and longitudinal-optical phonon contributions in GaAs/Al0.3 Ga0.7 AS parabolic quantum well structures are obtained as functions of the well width. It is shown that the binding energies of the bound polaron are obviously reduced by the electron-phonon interaction and the phonon contribution is observable and cannot be neglected.
文摘The ground-state energy and the average number of virtual phonons around the electron of a hydrogenic impurity confined in a parabolic quantum dot are calculated using the squeezed-state variational approach,which is based on two successive canonical transformations and uses a displaced-oscillator type unitary transformation to deal with the bilinear terms,which are usually neglected.Numerical calculations are carried out in order to study the relation between the ground-state energy and the average number of virtual phonons around the electron of a bound polaron in a parabolic quantum dot with the Coulomb binding parameter.The electron-phonon coupling constant and the confinement length are derived.
文摘The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combination operator and the perturbation method. The influence of the interaction between phonons with different wave vectors in the recoil process on the ground state energy of the bound polaron is discussed. Numerical calculations are performed,and the results show that the ground state energy increases significantly as the effective confinement length of the quantum dot decreases,considering of the interaction between phonons. When l0〉1.0, the influence of the interaction between phonons on the ground state energy cannot be ignored.
基金Project supported by the Doctoral Program Foundation of Institutions of Higher Education China (Grant No 20040126003) and the Natural Science Foundation of Inner Mongol of China (Grant No 200408020101).
文摘A 2D electron-longitudinal-acoustic-phonon interaction Hamiltonian is derived and used to calculate the groundstate energy of the acoustic polarons in two dimensions. The numerical results for the ground-state energy of the acoustic polarons in two and three dimensions are obtained. The 3D results agree with those obtained by using the Feynman path-integral approach. It is found that the critical coupling constant of the transition from the quasifree state to the self-trapped state in the 2D case is much smaller than in the 3D case for a given cutoff wave-vector. The theory has been used to judge the possibility of the self-trapping for several real materials. The results indicate that the self-trappings of the electrons in AlN and the holes in AlN and GaN are expected to be observed in 2D systems.
基金Project supported by the National Nature Science Foundation of China (Grant No 50272063) and the Foundation for Excellent Talents of Anhui Province, China (Grant No 2001Z016).
文摘The variational method is applied to the study of charge transfer in dry DNA by using an extended Holstein small polaron model in two cases: the site-dependent flnite-chain discrete case and the site-independent continuous one. The treatments in the two cases are proven to be consistent in theory and calculation. Discrete and continuous treatments of Holstein model both can yield a nonlinear equation to describe the charge migration in an actual long-range DNA chain. Our theoretical results of binding energy Eb, probability amplitude of charge carrier Ф and the relation between energy and charge-lattice coupling strength are in accordance with the available experimental results and recent theoretical calculations.
基金supported by the National Natural Science Foundation of China(Grant No.11364028)the Major Projects of the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2013ZD02)the Project of "Prairie Excellent" Engineering in Inner Mongolia Autonomous Region,China
文摘The polaron effect on the optical rectification in spherical quantum dots with a shallow hydrogenic impurity in the presence of electric field is theoretically investigated by taking into account the interactions of the electrons with both confined and surface optical phonons. Besides, the interaction between impurity and phonons is also considered. Numerical calculations are presented for typical Zn1-xCdxSe/ZnSe material. It is found that the polaronic effect or electric field leads to the redshifted resonant peaks of the optical rectification coefficients. It is also found that the peak values of the optical rectification coefficients with the polaronic effect are larger than without the polaronic effect, especially for smaller Cd concentrations or stronger electric field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11264027 and 11364030)the Project of Prairie Excellent Specialist of Inner Mongolia,Chinathe "Thousand,Hundred and Ten" Talent Training Project Foundation of Inner Mongolia Normal University,China(Grant No.RCPY-2-2012-K-039)
文摘We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contributions from various optical-phonon modes to the ground state energy as functions of the well width and Mg composition. In our calculations, we considered the effects of confined optical phonon modes, interface-optical phonon modes, and half-space phonon modes, as well as the anisotropy of the electron effective band mass, phonon frequency, and dielectric constant. Our numerical results indicate that the electron–optical phonon interactions importantly affect the polaronic energies in the ZnO/MgxZn1-xO quantum well. The electron–optical phonon interactions decrease the polaron energies. For quantum wells with narrower wells, the interface optical phonon and half-space phonon modes contribute more to the polaronic energies than the confined phonon modes. However, for wider quantum wells, the total contribution to the polaronic energy mainly comes from the confined modes. The contributions of the various phonon modes to the transition energy change differently with increasing well width. The contribution of the half-space phonons decreases slowly as the QW width increases, whereas the contributions of the confined and interface phonons reach a maximum at d ≈ 5.0 nm and then decrease slowly. However,the total contribution of phonon modes to the transition energy is negative and increases gradually with the QW width of d.As the composition x increases, the total contribution of phonons to the ground state energies increases slowly, but the total contributions of phonons to the transition energies decrease gradually. We analyze the physical reasons for these behaviors in detail.