Let G be a nonempty closed subset of a Banach space X.Let B(X)be the family of nonempty bounded closed subsets of X endowed with the Hausdorff distance and B_(G)(X)={A∈B(X):A∩G=φ},where the closure is taken in the ...Let G be a nonempty closed subset of a Banach space X.Let B(X)be the family of nonempty bounded closed subsets of X endowed with the Hausdorff distance and B_(G)(X)={A∈B(X):A∩G=φ},where the closure is taken in the metric space(B(X),H).For x∈X and F∈B_(G)(X),we denote the nearest point problem inf{||x-g||:g∈G}by min(x,G)and the mutually nearest point problem inf{||f-g||:f∈ F,g∈G}by min(F,G).In this paper,parallel to well-posedness of the problems min(a:,G)and mm(F,G)which are defined by De Blasi et al.,we further introduce the weak well-posedness of the problems min(x,G)and min(F,G).Under the assumption that the Banach space X has some geometric properties,we prove a series of results on weak well-posedness of min(x,G)and min(F,G).We also give two sufficient conditions such that two classes of subsets of X are almost Chebyshev sets.展开更多
基金Supported by the NSFC(Grant No.11671252)the NSFC(Grant No.11771278)。
文摘Let G be a nonempty closed subset of a Banach space X.Let B(X)be the family of nonempty bounded closed subsets of X endowed with the Hausdorff distance and B_(G)(X)={A∈B(X):A∩G=φ},where the closure is taken in the metric space(B(X),H).For x∈X and F∈B_(G)(X),we denote the nearest point problem inf{||x-g||:g∈G}by min(x,G)and the mutually nearest point problem inf{||f-g||:f∈ F,g∈G}by min(F,G).In this paper,parallel to well-posedness of the problems min(a:,G)and mm(F,G)which are defined by De Blasi et al.,we further introduce the weak well-posedness of the problems min(x,G)and min(F,G).Under the assumption that the Banach space X has some geometric properties,we prove a series of results on weak well-posedness of min(x,G)and min(F,G).We also give two sufficient conditions such that two classes of subsets of X are almost Chebyshev sets.