A limestone mine in Ohio has had instability problems that have led to massive roof falls extending to the surface. This study focuses on the role that weak, moisture-sensitive floor has in the instability issues.Prev...A limestone mine in Ohio has had instability problems that have led to massive roof falls extending to the surface. This study focuses on the role that weak, moisture-sensitive floor has in the instability issues.Previous NIOSH research related to this subject did not include analysis for weak floor or weak bands and recommended that when such issues arise they should be investigated further using a more advanced analysis. Therefore, to further investigate the observed instability occurring on a large scale at the Ohio mine, FLAC3 D numerical models were employed to demonstrate the effect that a weak floor has on roof and pillar stability. This case study will provide important information to limestone mine operators regarding the impact of weak floor causing the potential for roof collapse, pillar failure, and subsequent subsidence of the ground surface.展开更多
Higher production, better safety standard, and potential for automation are some of the benefits of longwall mining. Today, longwall face advances at a faster rate exposing many diversified rock layers in a short peri...Higher production, better safety standard, and potential for automation are some of the benefits of longwall mining. Today, longwall face advances at a faster rate exposing many diversified rock layers in a short period of time. It is now a serious challenge to cope with ground control problems such as roof falls, face and floor failure, and excessive shield loading as fast as possible to minimize production and monetary losses. In Illinois Coal Mines, the existence of weak floor strata blow the coal seam may pose additional problems related to floor heaving, shield base punching, and associated roof and face falls. In this study, the effects of weak floor on longwall ground control are analyzed using two dimensional finite element models. A two leg 635 6 ton (700 short ton) yielding capacity shield is included in the models to evaluate the effects of different thickness and material properties of the weak floor. The study indicates that the thickness and material properties of weak floor have significant effects on shield loading, the distribution and intensity of front abutment stress, failure zones in the surrounding strata, roof to floor convergence, and floor punching by the shield base.展开更多
基金conducted as part of the research program of the Office of Mine Safety and Health Research of the National Institute for Occupational Safety and Health(NIOSH)
文摘A limestone mine in Ohio has had instability problems that have led to massive roof falls extending to the surface. This study focuses on the role that weak, moisture-sensitive floor has in the instability issues.Previous NIOSH research related to this subject did not include analysis for weak floor or weak bands and recommended that when such issues arise they should be investigated further using a more advanced analysis. Therefore, to further investigate the observed instability occurring on a large scale at the Ohio mine, FLAC3 D numerical models were employed to demonstrate the effect that a weak floor has on roof and pillar stability. This case study will provide important information to limestone mine operators regarding the impact of weak floor causing the potential for roof collapse, pillar failure, and subsequent subsidence of the ground surface.
文摘Higher production, better safety standard, and potential for automation are some of the benefits of longwall mining. Today, longwall face advances at a faster rate exposing many diversified rock layers in a short period of time. It is now a serious challenge to cope with ground control problems such as roof falls, face and floor failure, and excessive shield loading as fast as possible to minimize production and monetary losses. In Illinois Coal Mines, the existence of weak floor strata blow the coal seam may pose additional problems related to floor heaving, shield base punching, and associated roof and face falls. In this study, the effects of weak floor on longwall ground control are analyzed using two dimensional finite element models. A two leg 635 6 ton (700 short ton) yielding capacity shield is included in the models to evaluate the effects of different thickness and material properties of the weak floor. The study indicates that the thickness and material properties of weak floor have significant effects on shield loading, the distribution and intensity of front abutment stress, failure zones in the surrounding strata, roof to floor convergence, and floor punching by the shield base.