Time stress includes all kinds of environment and operating stress such as shock, vibration, temperature and electric current that the electromechanical system suffers in the manufacture, transport and operating proce...Time stress includes all kinds of environment and operating stress such as shock, vibration, temperature and electric current that the electromechanical system suffers in the manufacture, transport and operating process. In this paper, the conception of time stress and prognostics and health management ( PHM) system are introduced. Then, in order to improve the false alarm recognition and fault prediction capabilities of the electromechanical equipment, a novel PHM architecture for electromechanical equipment is put forward based on a built-in test (BIT) system design technology and time stress analysis method. Finally, the structure, the design and implementing method and the functions of each module of this PHM system are described in detail.展开更多
Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accide...Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accidents leading to production shrinkage.The potential failure would negatively affect the profitability of the company,including production shut down,cost of spare parts,cost of labor,damage of reputation,risk of injury to people and the environment.In recent years,condition-based maintenance( CBM) and prognostic and health management( PHM) are developed and formed a strong connection among science,engineering,computer,reliability,communication,management,etc.Computerized maintenance management systems( CMMS) store a lot of data regarding the fault diagnosis and life prediction of the machinery equipment.It's too necessary to uncover useful knowledge from the huge amount of data.It's vital to find the ways to obtain useful and concise information from these data.This information can be of great influence in the decision making of managers.This article is a review of intelligent approaches in machinery faults diagnosis and prediction based on PHM and CBM.展开更多
Prognostics and health management (PHM) is very important to guarantee the reliability and safety of aerospace systems, and sensing and test are the precondition of PHM. Integrating design for testability into early...Prognostics and health management (PHM) is very important to guarantee the reliability and safety of aerospace systems, and sensing and test are the precondition of PHM. Integrating design for testability into early design stage of system early design stage is deemed as a fundamental way to improve PHM performance, and testability model is the base of testability analysis and design. This paper discusses a hierarchical model-based approach to testability modeling and analysis for heading attitude system health management. Quantified directed graph, of which the nodes represent components and tests and the directed edges represent fault propagation paths, is used to describe fault-test dependency, and quantitative testability information is assigned to nodes and directed edges. The fault dependencies between nodes can be obtained by functional fault analysis methodology that captures the physical architecture and material flows such as energy, heat, data, and so on. By incorporating physics of failure models into component, the dynamic process of a failing or degrading component can be projected onto system behavior, i.e., system symptoms. Then, the analysis of extended failure modes, mechanisms and effects is utilized to construct fault evolution-test dependency. Using this integrated model, the designers and system analysts can assess the test suite's fault detectability, fault isolability and fault predictability. And heading attitude system application results show that the proposed model can support testability analysis and design for PHM very well.展开更多
Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real...Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real-world engineering scenarios to train an intelligent diagnosis system is challenging.This paper proposes a fault diagnosis method combining several augmentation schemes to alleviate the problem of limited fault data.We begin by identifying relevant parameters that influence the construction of a spectrogram.We leverage the uncertainty principle in processing time-frequency domain signals,making it impossible to simultaneously achieve good time and frequency resolutions.A key determinant of this phenomenon is the window function's choice and length used in implementing the shorttime Fourier transform.The Gaussian,Kaiser,and rectangular windows are selected in the experimentation due to their diverse characteristics.The overlap parameter's size also influences the outcome and resolution of the spectrogram.A 50%overlap is used in the original data transformation,and±25%is used in implementing an effective augmentation policy to which two-stage regular CNN can be applied to achieve improved performance.The best model reaches an accuracy of 99.98%and a cross-domain accuracy of 92.54%.When combined with data augmentation,the proposed model yields cutting-edge results.展开更多
Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of...Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of increasing under prolonged operation and varying working conditions.Hence, the accurate fault severity categorization of bearings is vital in diagnosing faults that arise in rotating machinery.The variability and complexity of the recorded vibration signals pose a great hurdle to distinguishing unique characteristic fault features.In this paper, the efficacy and the leverage of a pre-trained convolutional neural network(CNN) is harnessed in the implementation of a robust fault classification model.In the absence of sufficient data, this method has a high-performance rate.Initially, a modified VGG16 architecture is used to extract discriminating features from new samples and serves as input to a classifier.The raw vibration data are strategically segmented and transformed into two representations which are trained separately and jointly.The proposed approach is carried out on bearing vibration data and shows high-performance results.In addition to successfully implementing a robust fault classification model, a prognostic framework is developed by constructing a health indicator(HI) under varying operating conditions for a given fault condition.展开更多
煤矿坑道钻机自动化和智能化程度的提高、作业范围和应用场景的扩展,使其系统复杂性和工作环境恶劣程度随之增加,对煤矿坑道钻机可靠性提出新的挑战。为有效降低因钻机故障带来的安全风险,提升钻机全寿命周期的任务品质,煤矿坑道钻机状...煤矿坑道钻机自动化和智能化程度的提高、作业范围和应用场景的扩展,使其系统复杂性和工作环境恶劣程度随之增加,对煤矿坑道钻机可靠性提出新的挑战。为有效降低因钻机故障带来的安全风险,提升钻机全寿命周期的任务品质,煤矿坑道钻机状态监测与故障诊断技术应运而生。首先从钻机状态参数采集、数据处理、诊断方法、系统应用等四个方面对煤矿坑道钻机关键系统状态监测和故障诊断技术研究现状进行总结分析,然后在故障预测与健康管理(prognostics and health management, PHM)技术基本概念的基础上根据集中式与分布式结合的方式提出了坑道钻机PHM技术框架,最后对煤矿坑道钻机PHM技术发展趋势进行展望,旨在为新一代煤矿坑道钻机及相关煤矿机械装备PHM技术的研究开展提供参考和借鉴。展开更多
针对现有城市轨道交通(简称:城轨)设备状态信息采集不完整、设备运维管理缺少决策支持数据、各专业运维业务缺乏统筹协调、运维效率低等现实问题,着眼于城轨设备综合运维管理,基于故障预测与健康管理(PHM,Prognostics Health Management...针对现有城市轨道交通(简称:城轨)设备状态信息采集不完整、设备运维管理缺少决策支持数据、各专业运维业务缺乏统筹协调、运维效率低等现实问题,着眼于城轨设备综合运维管理,基于故障预测与健康管理(PHM,Prognostics Health Management)理念,提出城轨设备智能运维系统的总体架构和功能框架,探讨亟需深入研究的关键技术。该系统通过采集和利用大量设备监测数据,利用故障诊断模型、人工智能算法和工作流引擎,在实现关键设备健康管理的基础上,自动生成设备运维计划,辅助设备运维管理决策,支持多业务作业协同,有助于提高城轨设备整体运维效能,提高城轨设备健康水平和性能,最小化停运时间,降低维修保障费用,保障城轨安全、可靠、高效运营。展开更多
随着智能变电站系统自动化程度的快速发展以及新型传感器的广泛应用,智能变电站内电气设备数据挖掘直接关系着智能变电站的可靠性、稳定性和安全性。针对大数据背景下智能变电站的智能运维,着重介绍故障预测与健康管理(prognostics and ...随着智能变电站系统自动化程度的快速发展以及新型传感器的广泛应用,智能变电站内电气设备数据挖掘直接关系着智能变电站的可靠性、稳定性和安全性。针对大数据背景下智能变电站的智能运维,着重介绍故障预测与健康管理(prognostics and health management,PHM)技术在智能变电站的应用,并采用状态检修系统开放体系架构(open system architecture condition-based management,OSA-CBM)标准对PHM系统的层次结构进行了梳理。首先,在对智能变电站系统结构进行分析的基础上,重点总结了可用于智能变电站的基于数据驱动的各种故障诊断及寿命预测方法;然后,系统分析了智能变电站中的检修管理的研究成果;最后,基于OSA-CBM架构提出了一种可用于智能变电站的PHM架构。展开更多
列车运行控制系统车载设备(简称:列控车载设备)是一种高度集成化的电子设备,针对其维护难点,提出将故障预测及健康管理(PHM,Prognostics and Health Management)技术引入列控车载设备维护。文章基于设备全生命周期管理理念,提出列控车...列车运行控制系统车载设备(简称:列控车载设备)是一种高度集成化的电子设备,针对其维护难点,提出将故障预测及健康管理(PHM,Prognostics and Health Management)技术引入列控车载设备维护。文章基于设备全生命周期管理理念,提出列控车载设备PHM实施方案,将设备功能需求与维修需求融合一体,使列控车载设备PHM系统的研发与列控车载设备的升级改造相协调,通过列控车载设备加装升级、数据处理与分析系统建设,在完善列控车载设备BIT和数据采集与分析功能的基础上,构建列控车载设备健康评估系统。并制定了列控车载设备PHM实施计划,稳步推进相关设备研制及系统研发与建设工作,使维修保障部门能够在列控车载设备健康评估系统支持下高效协同工作,实现故障处置闭环管理,推动列控车载设备维修转向视情维修模式。展开更多
文摘Time stress includes all kinds of environment and operating stress such as shock, vibration, temperature and electric current that the electromechanical system suffers in the manufacture, transport and operating process. In this paper, the conception of time stress and prognostics and health management ( PHM) system are introduced. Then, in order to improve the false alarm recognition and fault prediction capabilities of the electromechanical equipment, a novel PHM architecture for electromechanical equipment is put forward based on a built-in test (BIT) system design technology and time stress analysis method. Finally, the structure, the design and implementing method and the functions of each module of this PHM system are described in detail.
基金Fundamental Research Funds for the Central Universities,China(No.DUT17GF214)
文摘Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accidents leading to production shrinkage.The potential failure would negatively affect the profitability of the company,including production shut down,cost of spare parts,cost of labor,damage of reputation,risk of injury to people and the environment.In recent years,condition-based maintenance( CBM) and prognostic and health management( PHM) are developed and formed a strong connection among science,engineering,computer,reliability,communication,management,etc.Computerized maintenance management systems( CMMS) store a lot of data regarding the fault diagnosis and life prediction of the machinery equipment.It's too necessary to uncover useful knowledge from the huge amount of data.It's vital to find the ways to obtain useful and concise information from these data.This information can be of great influence in the decision making of managers.This article is a review of intelligent approaches in machinery faults diagnosis and prediction based on PHM and CBM.
基金supported by National Natural Science Foundation of China (No. 51175502)
文摘Prognostics and health management (PHM) is very important to guarantee the reliability and safety of aerospace systems, and sensing and test are the precondition of PHM. Integrating design for testability into early design stage of system early design stage is deemed as a fundamental way to improve PHM performance, and testability model is the base of testability analysis and design. This paper discusses a hierarchical model-based approach to testability modeling and analysis for heading attitude system health management. Quantified directed graph, of which the nodes represent components and tests and the directed edges represent fault propagation paths, is used to describe fault-test dependency, and quantitative testability information is assigned to nodes and directed edges. The fault dependencies between nodes can be obtained by functional fault analysis methodology that captures the physical architecture and material flows such as energy, heat, data, and so on. By incorporating physics of failure models into component, the dynamic process of a failing or degrading component can be projected onto system behavior, i.e., system symptoms. Then, the analysis of extended failure modes, mechanisms and effects is utilized to construct fault evolution-test dependency. Using this integrated model, the designers and system analysts can assess the test suite's fault detectability, fault isolability and fault predictability. And heading attitude system application results show that the proposed model can support testability analysis and design for PHM very well.
基金supported by the National Natural Science Foundation of China(42027805)the National Aeronautical Fund(ASFC-20172080005)。
文摘Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real-world engineering scenarios to train an intelligent diagnosis system is challenging.This paper proposes a fault diagnosis method combining several augmentation schemes to alleviate the problem of limited fault data.We begin by identifying relevant parameters that influence the construction of a spectrogram.We leverage the uncertainty principle in processing time-frequency domain signals,making it impossible to simultaneously achieve good time and frequency resolutions.A key determinant of this phenomenon is the window function's choice and length used in implementing the shorttime Fourier transform.The Gaussian,Kaiser,and rectangular windows are selected in the experimentation due to their diverse characteristics.The overlap parameter's size also influences the outcome and resolution of the spectrogram.A 50%overlap is used in the original data transformation,and±25%is used in implementing an effective augmentation policy to which two-stage regular CNN can be applied to achieve improved performance.The best model reaches an accuracy of 99.98%and a cross-domain accuracy of 92.54%.When combined with data augmentation,the proposed model yields cutting-edge results.
基金supported by the National Natural Science Foundation of China (42027805)National Aeronautical Fund (ASFC-2017 2080005)National Key R&D Program of China (2017YFC03 07100)。
文摘Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of increasing under prolonged operation and varying working conditions.Hence, the accurate fault severity categorization of bearings is vital in diagnosing faults that arise in rotating machinery.The variability and complexity of the recorded vibration signals pose a great hurdle to distinguishing unique characteristic fault features.In this paper, the efficacy and the leverage of a pre-trained convolutional neural network(CNN) is harnessed in the implementation of a robust fault classification model.In the absence of sufficient data, this method has a high-performance rate.Initially, a modified VGG16 architecture is used to extract discriminating features from new samples and serves as input to a classifier.The raw vibration data are strategically segmented and transformed into two representations which are trained separately and jointly.The proposed approach is carried out on bearing vibration data and shows high-performance results.In addition to successfully implementing a robust fault classification model, a prognostic framework is developed by constructing a health indicator(HI) under varying operating conditions for a given fault condition.
文摘煤矿坑道钻机自动化和智能化程度的提高、作业范围和应用场景的扩展,使其系统复杂性和工作环境恶劣程度随之增加,对煤矿坑道钻机可靠性提出新的挑战。为有效降低因钻机故障带来的安全风险,提升钻机全寿命周期的任务品质,煤矿坑道钻机状态监测与故障诊断技术应运而生。首先从钻机状态参数采集、数据处理、诊断方法、系统应用等四个方面对煤矿坑道钻机关键系统状态监测和故障诊断技术研究现状进行总结分析,然后在故障预测与健康管理(prognostics and health management, PHM)技术基本概念的基础上根据集中式与分布式结合的方式提出了坑道钻机PHM技术框架,最后对煤矿坑道钻机PHM技术发展趋势进行展望,旨在为新一代煤矿坑道钻机及相关煤矿机械装备PHM技术的研究开展提供参考和借鉴。
文摘针对现有城市轨道交通(简称:城轨)设备状态信息采集不完整、设备运维管理缺少决策支持数据、各专业运维业务缺乏统筹协调、运维效率低等现实问题,着眼于城轨设备综合运维管理,基于故障预测与健康管理(PHM,Prognostics Health Management)理念,提出城轨设备智能运维系统的总体架构和功能框架,探讨亟需深入研究的关键技术。该系统通过采集和利用大量设备监测数据,利用故障诊断模型、人工智能算法和工作流引擎,在实现关键设备健康管理的基础上,自动生成设备运维计划,辅助设备运维管理决策,支持多业务作业协同,有助于提高城轨设备整体运维效能,提高城轨设备健康水平和性能,最小化停运时间,降低维修保障费用,保障城轨安全、可靠、高效运营。
文摘随着智能变电站系统自动化程度的快速发展以及新型传感器的广泛应用,智能变电站内电气设备数据挖掘直接关系着智能变电站的可靠性、稳定性和安全性。针对大数据背景下智能变电站的智能运维,着重介绍故障预测与健康管理(prognostics and health management,PHM)技术在智能变电站的应用,并采用状态检修系统开放体系架构(open system architecture condition-based management,OSA-CBM)标准对PHM系统的层次结构进行了梳理。首先,在对智能变电站系统结构进行分析的基础上,重点总结了可用于智能变电站的基于数据驱动的各种故障诊断及寿命预测方法;然后,系统分析了智能变电站中的检修管理的研究成果;最后,基于OSA-CBM架构提出了一种可用于智能变电站的PHM架构。
文摘列车运行控制系统车载设备(简称:列控车载设备)是一种高度集成化的电子设备,针对其维护难点,提出将故障预测及健康管理(PHM,Prognostics and Health Management)技术引入列控车载设备维护。文章基于设备全生命周期管理理念,提出列控车载设备PHM实施方案,将设备功能需求与维修需求融合一体,使列控车载设备PHM系统的研发与列控车载设备的升级改造相协调,通过列控车载设备加装升级、数据处理与分析系统建设,在完善列控车载设备BIT和数据采集与分析功能的基础上,构建列控车载设备健康评估系统。并制定了列控车载设备PHM实施计划,稳步推进相关设备研制及系统研发与建设工作,使维修保障部门能够在列控车载设备健康评估系统支持下高效协同工作,实现故障处置闭环管理,推动列控车载设备维修转向视情维修模式。