The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relat...The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relationship among the content of RE (rare earths) in the wear resistant white cast iron and the heating temperature as well as the length and propagation speed of the fatigue cracks were determined. Based on the obtained results, the effect of RE modification and heat treatment on the impact fatigue property was further studied. Experimental results show that addition of RE can defer the time required for the generation of fatigue cracks, reduce their propagation speed and increase the impact fatigue resistance. The aforesaid effect is more noticeable in case of combined RE modification with heat treatment, which can be attributed to the variation in morphology and the distribution of the eutectic carbide network.展开更多
The formation and growth of thermal fatigue crack and the function of RE and heat treatment in wear resistance of cast iron containing low alloy were investigated,and it was analyzed in view of the activation energy f...The formation and growth of thermal fatigue crack and the function of RE and heat treatment in wear resistance of cast iron containing low alloy were investigated,and it was analyzed in view of the activation energy for the crack′s propagation. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides,and the cracks are grown by themselves spreading and joining each other. RE can improve the eutectic carbide′s morphology,inhibit the generation and propagation of thermal fatigue cracks,therefore,promote the activation energy for the crack′s propagation,and especially,which is more noticeable in case of the RE modification in combination with heat treatment.展开更多
The effects of heat treatment on the properties of multi element wear-resistant low-alloy steel (MLAWS) which is used to make the liner of rolling mill torus were researched. The results show that when quenching tem...The effects of heat treatment on the properties of multi element wear-resistant low-alloy steel (MLAWS) which is used to make the liner of rolling mill torus were researched. The results show that when quenching temperature is lower than 900℃, the hardness increases with the increase of temperature, and when quenching temperature is higher than 900℃, the hardness decreases with the increase of temperature. As quenching temperature is lower than 920℃, the effect of quenching temperature on the impact toughness is not obvious. When quenching temperature is higher than 920℃ , impact toughness decreases with the increase of temperature. When tempering temperature is higher than 450 ℃ , the hardness begins to decrease obviously. After tempering at 350℃, the best wear resistance was obtained. According to the service condition of rolling mill torus liner, the MLAWS is quenched from 900-920 ℃ and tempered at 350-370℃.展开更多
The formation and growth of thermal fatigue crack in chromium wear resistant cast iron was investigated, and the effect of hot deformation on the crack was analyzed by means of optical microscope and scanning electron...The formation and growth of thermal fatigue crack in chromium wear resistant cast iron was investigated, and the effect of hot deformation on the crack was analyzed by means of optical microscope and scanning electron microscope and high frequency induction thermal fatigue tester. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, hot deformation can improve the eutectic carbiders morphology and distribution, inhibit the generation and propagation of thermal fatigue cracks. In the experiment, the propagation rate of thermal fatigue crack reduces with the quantity of hot deformation increasing, which was analyzed in the point view of the activation energy of crack propagation.展开更多
The granular carbides formed from hot deformation in multiple alloying wear resistant cast iron were studied through the observation by means of optical microscope, SEM and TEM. The experimental results show that carb...The granular carbides formed from hot deformation in multiple alloying wear resistant cast iron were studied through the observation by means of optical microscope, SEM and TEM. The experimental results show that carbides with large size are formed from original short rhabdoid carbides existing in cast, those with small size directly nucleate in the matrix. Carbides with the size between the above are formed from precipitation induced by hot deformation. The bigger the deformation is, the larger the number of microsized granular carbides is. The mechanisms of nucleation and growth of granular carbides and the function of RE were discussed.展开更多
The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic e...The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experimental results show that heating temperature has great effect on impact toughness (α_k), bending fatigue (σ_(bb)) and relative toughness (σ_(bb)×f), but little effect on hardness (HRC). When the specimen was held at 960 ℃ for 3 h, it has better comprehensive mechanical properties, and the reason and regularity of the change for mechanical properties of the cast iron were reviewed.展开更多
The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the ...The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the cooling rate is closely related to the structure and properties, and for the cast iron, the best comprehensive mechanical properties were obtained by forced air cooling with a cooling rate as about 7 ℃/s. The reason and regularity for the change of mechanical properties were analyzed.展开更多
The influence of rare earths content on carbide morphology and mechanical properties of wear resistance of white cast iron was studied by means of metallographic examination,scanning electron microscopic examination a...The influence of rare earths content on carbide morphology and mechanical properties of wear resistance of white cast iron was studied by means of metallographic examination,scanning electron microscopic examination and mechanical property test. The experiment results show that RE can change carbides from continuous network to isolated particles and improve the mechanical properties,especially in combination with proper heat treatment. The optimum properties of wear resistance of white cast iron modified by RE of 0.045% can be obtained by normalization at 960 ℃ for 2 h.展开更多
High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research ...High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 ℃ to 1050 ℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 ℃, followed by a subsequent 2 h tempering at 400 ℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.展开更多
The paper has studied the mechanical properties and heat treatment effects on multi-element low alloy wear-resistant steel (MLAWS) used as a material for the liner of rolling mill torii. The results show that when que...The paper has studied the mechanical properties and heat treatment effects on multi-element low alloy wear-resistant steel (MLAWS) used as a material for the liner of rolling mill torii. The results show that when quenched at 900-920℃ and tempered at 350-370℃, the MLAWS has achieved hardness above 60 HRC, tensile strength greater than 1 600 MPa, impact toughness higher than 18J/cm2 and fracture toughness greater than 37 MPa·m1/2. When the quenching temperature is lower than 900℃, the hardness of the MLAWS increases with the temperature. When the quenching temperature is higher than 900℃, the hardness decreases with the increase of temperature. At a quenching temperature below 920℃, the effect of quenching temperature on the impact toughness is not obvious. In quenching at above 920℃, impact toughness decreases as the temperature increases. When the tempering temperature is exceeding 450℃, the hardness begins to decrease significantly. Tempering at 350℃ has produced the best wear resistance on the MLAWS.展开更多
The Influence of RE on wear resistance of wear resistant cast iron containing low alloy was studied by means of slide wear and impact wear test. Moreover, its microstructure and characteristics of wearing surface was ...The Influence of RE on wear resistance of wear resistant cast iron containing low alloy was studied by means of slide wear and impact wear test. Moreover, its microstructure and characteristics of wearing surface was analyzed. The experimental results show that RE can improve the wear resistance of wear resistant cast iron containing low alloy, especially for impact wear resistance. The optimum wear resistance of wear resistant cast iron containing low alloy modified by RE of 0.046% can be obtained by normalization at 950 ℃ for 3 h. Moreover, the coordinated effect of rare earths and heat treatment was also revealed in this paper.展开更多
The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. T...The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment.展开更多
A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three diff...A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three different loading conditions were tested under a con- stant speed. It was observed that this alloy could reduce the wear loss of standard gray cast iron by up to 89%, which was much greater than what was achieved in previous reports. Scanning electron microscopy (SEM) was used to determine the predominant wear mechanism of both the alloys. In a mild wear regime, the oxidative mechanism was predominant; however, in a severe wear regime, this mechanism was not predominant and the adhesive mechanism was involved. EDX analysis was conducted to evaluate the quantitative amounts of elements in the tribochemical films formed on the wear tracks.展开更多
In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heattreated al...In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heattreated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.展开更多
The thermal fatigue behavior of wear resistance cast iron with different quantity of deformation has been investigated. The results show that eutectic carbide is the main location and passage for initiation and extens...The thermal fatigue behavior of wear resistance cast iron with different quantity of deformation has been investigated. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, approving that the more serious, the carbide breaks. The higher thermal fatigue resistance of wear resistance cast iron will be and thermal fatigue fracture belongs mainly to brittleness.展开更多
The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of pro...The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed.展开更多
A series of novel steel-Ti(C,N)composites was fabricated by spark plasma sintering(SPS)and subsequent heat treatment.The hardness,indentation fracture resistance,and wear behaviour of the steel-Ti(C,N)composites were ...A series of novel steel-Ti(C,N)composites was fabricated by spark plasma sintering(SPS)and subsequent heat treatment.The hardness,indentation fracture resistance,and wear behaviour of the steel-Ti(C,N)composites were compared with those of the unreinforced samples,and their potentials were assessed by comparison with traditional cermet/hardmetal systems.The results showed that with the addi-tion of 20wt%Ti(C,N),the wear rates of the newly examined composites reduced by a factor of about 2 to 4 and were comparable to those of cermets and hardmetals.The martensitic transformation of the steel matrix and the formation of in situ carbides induced by heat treatment en-hanced the wear resistance.Although the presence of excessive in situ carbides improved the hardness,the low indentation fracture resistance(IFR)value resulted in brittle fracture,which in turn resulted in poor wear property.Moreover,the operative wear mechanisms were investig-ated.This study provides a practical and cost-effective approach to prepare steel-Ti(C,N)composites as potential wear-resistant materials.展开更多
文摘The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relationship among the content of RE (rare earths) in the wear resistant white cast iron and the heating temperature as well as the length and propagation speed of the fatigue cracks were determined. Based on the obtained results, the effect of RE modification and heat treatment on the impact fatigue property was further studied. Experimental results show that addition of RE can defer the time required for the generation of fatigue cracks, reduce their propagation speed and increase the impact fatigue resistance. The aforesaid effect is more noticeable in case of combined RE modification with heat treatment, which can be attributed to the variation in morphology and the distribution of the eutectic carbide network.
文摘The formation and growth of thermal fatigue crack and the function of RE and heat treatment in wear resistance of cast iron containing low alloy were investigated,and it was analyzed in view of the activation energy for the crack′s propagation. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides,and the cracks are grown by themselves spreading and joining each other. RE can improve the eutectic carbide′s morphology,inhibit the generation and propagation of thermal fatigue cracks,therefore,promote the activation energy for the crack′s propagation,and especially,which is more noticeable in case of the RE modification in combination with heat treatment.
基金ItemSponsored by Tackle-Key-Programof Science and Technology Committee of Henan Province (042426002 ,0535010700)Henan Innovation Project for University Prominent Research Talents (2006KYCX022)
文摘The effects of heat treatment on the properties of multi element wear-resistant low-alloy steel (MLAWS) which is used to make the liner of rolling mill torus were researched. The results show that when quenching temperature is lower than 900℃, the hardness increases with the increase of temperature, and when quenching temperature is higher than 900℃, the hardness decreases with the increase of temperature. As quenching temperature is lower than 920℃, the effect of quenching temperature on the impact toughness is not obvious. When quenching temperature is higher than 920℃ , impact toughness decreases with the increase of temperature. When tempering temperature is higher than 450 ℃ , the hardness begins to decrease obviously. After tempering at 350℃, the best wear resistance was obtained. According to the service condition of rolling mill torus liner, the MLAWS is quenched from 900-920 ℃ and tempered at 350-370℃.
基金ItemSponsored by Guiding Programof Science and Technology Research of Jilin Province of China (20000513)
文摘The formation and growth of thermal fatigue crack in chromium wear resistant cast iron was investigated, and the effect of hot deformation on the crack was analyzed by means of optical microscope and scanning electron microscope and high frequency induction thermal fatigue tester. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, hot deformation can improve the eutectic carbiders morphology and distribution, inhibit the generation and propagation of thermal fatigue cracks. In the experiment, the propagation rate of thermal fatigue crack reduces with the quantity of hot deformation increasing, which was analyzed in the point view of the activation energy of crack propagation.
文摘The granular carbides formed from hot deformation in multiple alloying wear resistant cast iron were studied through the observation by means of optical microscope, SEM and TEM. The experimental results show that carbides with large size are formed from original short rhabdoid carbides existing in cast, those with small size directly nucleate in the matrix. Carbides with the size between the above are formed from precipitation induced by hot deformation. The bigger the deformation is, the larger the number of microsized granular carbides is. The mechanisms of nucleation and growth of granular carbides and the function of RE were discussed.
文摘The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experimental results show that heating temperature has great effect on impact toughness (α_k), bending fatigue (σ_(bb)) and relative toughness (σ_(bb)×f), but little effect on hardness (HRC). When the specimen was held at 960 ℃ for 3 h, it has better comprehensive mechanical properties, and the reason and regularity of the change for mechanical properties of the cast iron were reviewed.
文摘The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the cooling rate is closely related to the structure and properties, and for the cast iron, the best comprehensive mechanical properties were obtained by forced air cooling with a cooling rate as about 7 ℃/s. The reason and regularity for the change of mechanical properties were analyzed.
文摘The influence of rare earths content on carbide morphology and mechanical properties of wear resistance of white cast iron was studied by means of metallographic examination,scanning electron microscopic examination and mechanical property test. The experiment results show that RE can change carbides from continuous network to isolated particles and improve the mechanical properties,especially in combination with proper heat treatment. The optimum properties of wear resistance of white cast iron modified by RE of 0.045% can be obtained by normalization at 960 ℃ for 2 h.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2013BAF01B01)
文摘High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 ℃ to 1050 ℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 ℃, followed by a subsequent 2 h tempering at 400 ℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.
文摘The paper has studied the mechanical properties and heat treatment effects on multi-element low alloy wear-resistant steel (MLAWS) used as a material for the liner of rolling mill torii. The results show that when quenched at 900-920℃ and tempered at 350-370℃, the MLAWS has achieved hardness above 60 HRC, tensile strength greater than 1 600 MPa, impact toughness higher than 18J/cm2 and fracture toughness greater than 37 MPa·m1/2. When the quenching temperature is lower than 900℃, the hardness of the MLAWS increases with the temperature. When the quenching temperature is higher than 900℃, the hardness decreases with the increase of temperature. At a quenching temperature below 920℃, the effect of quenching temperature on the impact toughness is not obvious. In quenching at above 920℃, impact toughness decreases as the temperature increases. When the tempering temperature is exceeding 450℃, the hardness begins to decrease significantly. Tempering at 350℃ has produced the best wear resistance on the MLAWS.
文摘The Influence of RE on wear resistance of wear resistant cast iron containing low alloy was studied by means of slide wear and impact wear test. Moreover, its microstructure and characteristics of wearing surface was analyzed. The experimental results show that RE can improve the wear resistance of wear resistant cast iron containing low alloy, especially for impact wear resistance. The optimum wear resistance of wear resistant cast iron containing low alloy modified by RE of 0.046% can be obtained by normalization at 950 ℃ for 3 h. Moreover, the coordinated effect of rare earths and heat treatment was also revealed in this paper.
基金financially supported by the Key Project of China National Erzhong Group Co.(No.2012zx04010-081)
文摘The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment.
文摘A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three different loading conditions were tested under a con- stant speed. It was observed that this alloy could reduce the wear loss of standard gray cast iron by up to 89%, which was much greater than what was achieved in previous reports. Scanning electron microscopy (SEM) was used to determine the predominant wear mechanism of both the alloys. In a mild wear regime, the oxidative mechanism was predominant; however, in a severe wear regime, this mechanism was not predominant and the adhesive mechanism was involved. EDX analysis was conducted to evaluate the quantitative amounts of elements in the tribochemical films formed on the wear tracks.
基金financially supported by the Science and Technology Plan Project of Guangdong Province(Nos.2010A080407002,2011A080802003,2011A091000035,2012B090600030)the Fundamental Research Funds for the Central Universities(No.21612105)
文摘In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heattreated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.
文摘The thermal fatigue behavior of wear resistance cast iron with different quantity of deformation has been investigated. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, approving that the more serious, the carbide breaks. The higher thermal fatigue resistance of wear resistance cast iron will be and thermal fatigue fracture belongs mainly to brittleness.
文摘The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed.
基金This work was financially supported by the National Key Research and Development Plan of China(No.2017YFB0305900).
文摘A series of novel steel-Ti(C,N)composites was fabricated by spark plasma sintering(SPS)and subsequent heat treatment.The hardness,indentation fracture resistance,and wear behaviour of the steel-Ti(C,N)composites were compared with those of the unreinforced samples,and their potentials were assessed by comparison with traditional cermet/hardmetal systems.The results showed that with the addi-tion of 20wt%Ti(C,N),the wear rates of the newly examined composites reduced by a factor of about 2 to 4 and were comparable to those of cermets and hardmetals.The martensitic transformation of the steel matrix and the formation of in situ carbides induced by heat treatment en-hanced the wear resistance.Although the presence of excessive in situ carbides improved the hardness,the low indentation fracture resistance(IFR)value resulted in brittle fracture,which in turn resulted in poor wear property.Moreover,the operative wear mechanisms were investig-ated.This study provides a practical and cost-effective approach to prepare steel-Ti(C,N)composites as potential wear-resistant materials.