The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusi...The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusion of engineered fiber is one of the promising methods to not only enhanced the mechanical performance but also suppressed the drawbacks that associate with such plant-based fiber to some extent. A usual hand lay-up method was taken-up in this work to fabricate four layered of hybrid kenaf(K)/glass(G)polyester laminates with different stacking order such as KKKK,KGKG,KGGK,GKKG and GGGG. The erosive character of the laminates was examined under three distinct particle velocities(48m/s, 70m/s,82m/s)and four different impact angles(30°, 45°, 60°, 90°). All fabricated laminates exhibited a semiductile character at lower velocities(48m/s and70m/s)as peak wear rate was observed at45° impact angle. However,they showed a semi-brittle character at high velocity(82m/s)as maximum rate of erosion was noticed at60° impact angle. Again,the influence of stacking order of piles on erosion wear was also clearly noticed. Moreover,the semi-brittle/semi-ductile characterization was also evidenced in accordance to the range of erosion efficiencies. The micro-structures of worn surfaces were inspected thoroughly from the images of scanning electron microscope(SEM)to evident the mechanism of erosion.展开更多
Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research ...Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research effort aims to develop novel hybrid composites based on AA 2014 alloy through the use of liquid metallurgy stir casting to reinforce dual ceramic particles of Zirconium Diboride(ZrB_(2))and Boron Carbide(B4C).The weight percentage(wt%)of ZrB_(2) was varied(0,5,10,and 15),while a constant 5 wt%of B4C was maintained during this fabrication.The as-cast samples have been assessed using an Optical Microscope(OM)and a Scanning Electron Microscope(SEM)with Energy Dispersive Spectroscopy(EDS).The properties such as hardness,tensile strength,and wear characteristics of stir cast specimens were assessed to examine the impact of varying weight percentages of reinforcements in AA 2014 alloy.In particular,dry sliding wear behaviour was evaluated considering varied loads using a pin-on-disc tribotester.As the weight%of ZrB_(2) grew and B4C was incorporated,hybrid composites showed higher hardness,tensile strength,and wear resistance.Notably,the incorporation of a cumulative reinforcement consisting of 15 wt%ZrB_(2) and 5 wt%B4C resulted in a significant 31.86%increase in hardness and a 44.1%increase in tensile strength compared to AA 2014 alloy.In addition,it has been detected that wear resistance of hybrid composite pin(containing 20 wt%cumulative reinforcement)is higher than that of other stir cast wear test pins during the whole range of applied loads.Fractured surfaces of tensile specimens showed ductile fracture in the AA 2014 matrix and mixed mode for hybrid composites.Worn surfaces obtained employing higher applied load indicated abrasive wear with little plastic deformation for hybrid composites and dominant adhesive wear for matrix alloy.Hence,the superior mechanical and tribological performance of hybrid composites can be attributed to dual reinforcement particles being dispersed well and the effective transmission of load at this specific composition.展开更多
Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion...Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.展开更多
In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orienta...In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations(0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite(γ) and delta-ferrite(δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both(within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle,and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts;it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft.展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc...The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.展开更多
Railway accidents,particularly serious derailments,can lead to catastrophic consequences.Therefore,it is essential to prevent derailment escalation to reduce the likelihood of severe derailments.Train post-derailment ...Railway accidents,particularly serious derailments,can lead to catastrophic consequences.Therefore,it is essential to prevent derailment escalation to reduce the likelihood of severe derailments.Train post-derailment behaviours and containment methods play a critical role in preventing derailment escalation and providing passive safety protection and accident prevention in the event of a derailment.However,despite the increasing attention on this field from academia and industry in recent years,there is a lack of systematic exploration and summarization of emerging applications and containment methods in train post-derailment research.For this reason,this paper presents a comprehensive review of existing studies on train post-derailment behaviours,encompassing various topics such as post-derailment contact-impact models,dynamic modelling and simulation techniques,and the primary factors influencing post-derailment behaviours.Significantly,this review introduces and elucidates substitute guidance mechanisms(SGMs),which serve as railway-specific passive safety protection and accident prevention measures.The various types of SGMs are depicted,and their ongoing developments and applications are explored in depth.The review additionally points out several unresolved challenges including the adverse effects of SGMs,and proposes future research directions to advance the theoretical understanding and practical application of train post-derailment behaviours and containment methods.This review seeks to be a valuable reference for railway industry professionals in preventing catastrophic derailment consequences through post-derailment containment methods.展开更多
Railway infrastructure relies on the dynamic interaction between wheels and rails;thus,assessing wheel wear is a critical aspect of maintenance and safety.This paper focuses on the wheel-rail wear indicator T-gamma(T...Railway infrastructure relies on the dynamic interaction between wheels and rails;thus,assessing wheel wear is a critical aspect of maintenance and safety.This paper focuses on the wheel-rail wear indicator T-gamma(Tγ).Amidst its use,it becomes apparent that Tγ,while valuable,fails to provide a comprehensive reflection of the actual material removal and actual contact format,which means that using only Tγas a target for optimization of profiles is not ideal.In this work,three different freight wagons are evaluated:a meter-gauge and a broad-gauge heavy haul vehicles from South American railways,and a standard-gauge freight vehicle operated in Europe,with different axle loads and dissimilar new wheel/rail profiles.These vehicles are subjected to comprehensive multibody simulations on various tracks.The simulations aimed to elucidate the intricate relationship between different wear indicators:Tγ,wear index,material removal,and maximum wear depth,under diverse curves,non-compensated lateral accelerations(A_(nc)),and speeds.Some findings showed a correlation of 0.96 between Tγand wear depth and 0.82 between wear index and material removed for the outer wheel.From the results,the Tγis better than the wear index to be used when analyzing wear depth while the wear index is more suited to foresee the material lost.The results also show the low influence of A_(nc)on wear index and Tγ.By considering these factors together,the study aims to improve the understanding of wheel-rail wear by selecting the best wear analysis approaches based on the effectiveness of each parameter.展开更多
To ensure an accurate selection of rolling guide shoe materials,an analysis of the intricate relationship between linear speed and wear is imperative.Finite element simulations and experimental measurements are employ...To ensure an accurate selection of rolling guide shoe materials,an analysis of the intricate relationship between linear speed and wear is imperative.Finite element simulations and experimental measurements are employed to evaluate four distinct types of materials:polyurethane,rubber,polytetrafluoroethylene(PTFE),and nylon.The speed-index of each material is measured,serving as a preparation for subsequent analysis.Furthermore,the velocity-wear factor is determined,providing insights into the resilience and durability of the material across varying speeds.Additionally,a wear model tailored specifically for viscoelastic bodies is explored,which is pivotal in understanding the wear mechanisms within the material.Leveraging this model,wear predictions are made under higher speed conditions,facilitating the choice of material for rolling guide shoes.To validate the accuracy of the model,the predicted degree of wear is compared with experimental data,ensuring its alignment with both theoretical principles and real-world performance.This comprehensive analysis has verified the effectiveness of the model in the selection of materials under high-speed conditions,thereby offering confidence in its reliability and ensuring optimal performance.展开更多
Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term o...Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term operation.Both profile shift and tooth surface wear(TSW)can impact the meshing characteristics by altering the involute tooth profile.In this study,a tooth stiffness model of spur gears that incorporates profile shift,TSW,tooth deformation,tooth contact deformation,fillet-foundation deformation,and gear body structure coupling is established.This model efficiently and accurately determines the time-varying mesh stiffness(TVMS).Additionally,an improved wear depth prediction method for spur gears is developed,which takes into consideration the mutually prime teeth numbers and more accurately reflects actual gear meshing conditions.Results show that consideration of the mutual prime of teeth numbers will have a certain impact on the TSW process.Furthermore,the finite element method(FEM)is employed to accurately verify the values of TVMS and load sharing ratio(LSR)of profile-shifted gears and worn gears.This study quantitatively analyzes the effect of profile shift on the surface wear process,which suggests that gear profile shift can partially alleviate the negative effects of TSW.The contribution of this study provides valuable insights into the design and maintenance of spur gear systems.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
Medicinal leeches have been utilized in therapy for thousands of years. However, the adaptation physiology between leeches and hosts is not fully understand. To disclose the molecular mechanisms of adaptation between ...Medicinal leeches have been utilized in therapy for thousands of years. However, the adaptation physiology between leeches and hosts is not fully understand. To disclose the molecular mechanisms of adaptation between leech and host, the body transcriptomes of hunger and fed blood-sucking Poecilobdella javanica, Haemadipsa cavatuses, and Hirudo nipponia leeches were obtained by RNA sequencing, after comparison, a stratified unigenes group was obtained, which closely correlated to body distension. In the group, Rfamide receptor decreased significantly (P < 0.05) while serotonin receptor increased significantly (P < 0.05). Moreover, four KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including cardiac muscle contraction, complement and coagulation cascades, renin-angiotensin system, and hypertrophic cardiomyopathy were significantly enriched. The unigenes annotation, neuroregulators correlation analysis and induced function of the KEGG pathways, were consistently supported the same result as: vasoconstriction and systole reaction enhance in hunger leeches and vice versa vasodilation and diastole increase in fed leeches, meanwhile, Interspecific comparison and correlative analyses of physiological function showed that the strongest reaction of induced heart failure from four KEGG occur in strongest reaction of systole in hungry P. javanica and in strongest reaction of diastole in fed H. nipponia. Overall, heart failure is likely a physiological function involved in feeding behaviour.展开更多
The continuous pursuit for a better quality of life promotes continuous advancements in intelligent technology.Flexible wearable and implantable bioelectronics have emerged as an innovative complement to rigid materia...The continuous pursuit for a better quality of life promotes continuous advancements in intelligent technology.Flexible wearable and implantable bioelectronics have emerged as an innovative complement to rigid material-based electronic devices[1-3].Due to their distinct advantages in terms of ductile,ultrathin,and biocompatible features,these elastic and soft bioelectronic devices can be seamlessly mounted onto various real or artificial tissues and organs.展开更多
Background The presence of mental health conditions is pervasive in patients who experienced acute myocardial infarction(AMI),significantly disrupting their recovery.Providing timely and easily accessible psychologica...Background The presence of mental health conditions is pervasive in patients who experienced acute myocardial infarction(AMI),significantly disrupting their recovery.Providing timely and easily accessible psychological interventions using virtual reality-based cognitive-behavioural therapy(VR-CBT)could potentially improve both acute and long-term symptoms affecting their mental health.Aims We aim to examine the effectiveness of VR-CBT on anxiety symptoms in patients with AMI who were admitted to the intensive care unit(ICU)during the acute stage of their illness.Methods In this single-blind randomised clinical trial,participants with anxiety symptoms who were admitted to the ICU due to AMI were continuously recruited from December 2022 to February 2023.Patients who were Han Chinese aged 18-75 years were randomly assigned(1:1)via block randomisation to either the VR-CBT group to receive VR-CBT in addition to standard mental health support,or the control group to receive standard mental health support only.VR-CBT consisted of four modules and was delivered at the bedside over a 1-week period.Assessments were done at baseline,immediately after treatment and at 3-month follow-up.The intention-to-treat analysis began in June 2023.The primary outcome measure was the changes in anxiety symptoms as assessed by the Hamilton Anxiety Rating Scale(HAM-A).Results Among 148 randomised participants,70 were assigned to the VR-CBT group and 78 to the control group.The 1-week VR-CBT intervention plus standard mental health support significantly reduced the anxiety symptoms compared with standard mental health support alone in terms of HAM-A scores at both post intervention(Cohen’s d=−1.27(95%confidence interval(CI):−1.64 to−0.90,p<0.001)and 3-month follow-up(Cohen’s d=−0.37(95%CI:−0.72 to−0.01,p=0.024).Of the 70 participants who received VR-CBT,62(88.6%)completed the entire intervention.Cybersickness was the main reported adverse event(n=5).Conclusions Our results indicate that VR-CBT can significantly reduce post-AMI anxiety at the acute stage of the illness;the improvement was maintained at the 3-month follow-up.Trial registration number The trial was registered at www.chictr.org.cn with the identifier:ChiCTR2200066435.展开更多
Background Little is known about the association between stressors(especially positive stressors)during pregnancy and postpartum depression and anxiety.Aims We investigated the association between positive and negativ...Background Little is known about the association between stressors(especially positive stressors)during pregnancy and postpartum depression and anxiety.Aims We investigated the association between positive and negative stress events during different stages of pregnancy and postpartum mental health outcomes among low-income pregnant women with symptoms of anxiety in Pakistan and evaluated whether an intervention based on cognitive behavioural therapy(CBT)had a regulatory effect.Methods Participants were 621 pregnant Pakistani women with mild anxiety.Using the Pregnancy Experience Scale-Brief Version,six scores were created to assess positive and negative stressors.We performed a multivariate linear regression to examine whether these six scores,measured both at baseline and in the third trimester,were associated with postpartum anxiety and depressive symptoms.The effect of the intervention on this relationship was examined by adding an interaction term to the regression model.Results Hassles frequency measured in the third trimester was positively associated with depression(B=0.22,95%confidence interval(Cl):0.09 to 0.36)and anxiety(B=0.19,95%Cl:0.08to 0.30).At the same timepoint,uplifts intensity was negatively associated with symptoms of depression(B=-0.82,95%Cl:1.46 to-0.18)and anxiety(B=-0.70,95%Cl:-1.25 to-0.15),whereas hassles intensity was positively related to symptoms of depression(B=1.02,95%Cl:0.36 to 1.67)and anxiety(B=0.90,95%Cl:0.34 to 1.47).The intensity ratio of hassles to uplifts reported in the third trimester was positively related to both depression(B=1.40,95%Cl:0.59 to 2.20)and anxiety(B=1.26,95%Cl:0.57 to 1.96).The intervention strengthened the overall positive effects of uplfts and the negative effects of hassles.Pregnancy experiences at baseline during early pregnancy to mid-pregnancy were not associated with mental health outcomes.Conclusions Stressors in the third trimester but not earlier in pregnancy were associated with postpartum symptoms of anxiety and depression.The CBT intervention modified the association between pregnancy stressors and postpartum mental health outcomes.Programmes that promote positive experiences and reduce negative experiences,especially in late pregnancy,may mitigate postpartum mental health consequences.展开更多
BACKGROUND Smartwatches have become readily accessible tools for detecting atrial fibrillation(AF).There remains limited data on how they affect psychosocial outcomes and engagement in older adults.We examine the heal...BACKGROUND Smartwatches have become readily accessible tools for detecting atrial fibrillation(AF).There remains limited data on how they affect psychosocial outcomes and engagement in older adults.We examine the health behavior outcomes of stroke survivors prescribed smartwatches for AF detection stratified by age.METHODS We analyzed data from the Pulsewatch study,a randomized controlled trial that enrolled patients(≥50 years)with a history of stroke or transient ischemic attack and CHA2DS2-VASc≥2.Intervention participants were equipped with a cardiac patch monitor and a smartwatch-app dyad,while control participants wore the cardiac patch monitor for up to 44 days.We evaluated health behavior parameters using standardized tools,including the Consumer Health Activation Index,the Generalized Anxiety Disorder questionnaire,the 12-Item Short Form Health Survey,and wear time of participants categorized into three age groups:Group 1(ages 50-60),Group 2(ages 61-69),and Group 3(ages 70-87).We performed statistical analysis using a mixedeffects repeated measures linear regression model to examine differences amongst age groups.RESULTS Comparative analysis between Groups 1,2 and 3 revealed no significant differences in anxiety,patient activation,perception of physical health and wear time.The use of smartwatch technology was associated with a decrease in perception of mental health for Group 2 compared to Group 1(β=-3.29,P=0.046).CONCLUSION Stroke survivors demonstrated a willingness to use smartwatches for AF monitoring.Importantly,among these study participants,the majority did not experience negative health behavior outcomes or decreased engagement as age increased.展开更多
Background: Adolescents in developing countries have limited knowledge about the prevention of STIs and unwanted pregnancies. In several African countries, risky sexual behaviour persists, including early sexual debut...Background: Adolescents in developing countries have limited knowledge about the prevention of STIs and unwanted pregnancies. In several African countries, risky sexual behaviour persists, including early sexual debut, multiple sexual partners, economic and sexual exchange, and low condom and contraceptive use. The purpose of this study is to assess the sexual and reproductive health knowledge and behaviour of adolescents in rural Burkina Faso in order to improve their sexual and reproductive health. Method: This was a descriptive cross-sectional study with prospective data collection conducted from 07 March to 04 April 2022 in the area of the Demographic and Health Surveillance System of the Nouna Research Centre. A questionnaire was administered to a randomly selected sample of 1202 adolescents. Results: The mean age of the adolescents was 14.1 years and 56.6% were male. Only 58.2% of the adolescents had ever heard of HIV/AIDS. Of these, 95.7% did not know their HIV status. In addition, 15.8% had ever had sexual intercourse and 2.4% had been sexually active at an early age. Almost 45% had not used any contraceptive method the last time they had sex. Condoms were the most frequently used contraceptive method (47.4%). Among teenagers, 27.6% had been pregnant at least once, 7.3% were married and the average age at marriage was 18.45 years. Almost 7% (6.9%) of teenagers had more than one sexual partner. Conclusion: Adolescents have limited knowledge about reproductive health. Risky sexual behaviour persists. Awareness campaigns need to be intensified to improve their sexual and reproductive health.展开更多
This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this m...This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.展开更多
Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their ove...Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their overall effectiveness.In order to improve the tool life and reduce wear,this study introduces an emerging method called magnetic field-assisted batch polishing(MABP)for simultaneously polishing multiple ceramic cutting inserts.Several polishing experiments were conducted under different conditions,and the wear characteristics were clarified by cutting S136H steel.The results showed that after 15 min of polishing,the surface roughness at the flank face,edge,and nose of the inserts was reduced to below 2.5 nm,6.25 nm,and 45.8 nm,respectively.Furthermore,the nose radii of the inserts did not change significantly,and there were no significant changes in the weight percentage of elements before and after polishing.Additionally,the tool life of the batch polished inserts was found to be up to 1.75 times longer than that of unpolished inserts.These findings suggest that the MABP method is an effective way to mass polish ceramic cutting inserts,resulting in significantly reduced tool wear.Furthermore,this novel method offers new possibilities for polishing other tools.展开更多
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ...During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.展开更多
文摘The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusion of engineered fiber is one of the promising methods to not only enhanced the mechanical performance but also suppressed the drawbacks that associate with such plant-based fiber to some extent. A usual hand lay-up method was taken-up in this work to fabricate four layered of hybrid kenaf(K)/glass(G)polyester laminates with different stacking order such as KKKK,KGKG,KGGK,GKKG and GGGG. The erosive character of the laminates was examined under three distinct particle velocities(48m/s, 70m/s,82m/s)and four different impact angles(30°, 45°, 60°, 90°). All fabricated laminates exhibited a semiductile character at lower velocities(48m/s and70m/s)as peak wear rate was observed at45° impact angle. However,they showed a semi-brittle character at high velocity(82m/s)as maximum rate of erosion was noticed at60° impact angle. Again,the influence of stacking order of piles on erosion wear was also clearly noticed. Moreover,the semi-brittle/semi-ductile characterization was also evidenced in accordance to the range of erosion efficiencies. The micro-structures of worn surfaces were inspected thoroughly from the images of scanning electron microscope(SEM)to evident the mechanism of erosion.
文摘Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research effort aims to develop novel hybrid composites based on AA 2014 alloy through the use of liquid metallurgy stir casting to reinforce dual ceramic particles of Zirconium Diboride(ZrB_(2))and Boron Carbide(B4C).The weight percentage(wt%)of ZrB_(2) was varied(0,5,10,and 15),while a constant 5 wt%of B4C was maintained during this fabrication.The as-cast samples have been assessed using an Optical Microscope(OM)and a Scanning Electron Microscope(SEM)with Energy Dispersive Spectroscopy(EDS).The properties such as hardness,tensile strength,and wear characteristics of stir cast specimens were assessed to examine the impact of varying weight percentages of reinforcements in AA 2014 alloy.In particular,dry sliding wear behaviour was evaluated considering varied loads using a pin-on-disc tribotester.As the weight%of ZrB_(2) grew and B4C was incorporated,hybrid composites showed higher hardness,tensile strength,and wear resistance.Notably,the incorporation of a cumulative reinforcement consisting of 15 wt%ZrB_(2) and 5 wt%B4C resulted in a significant 31.86%increase in hardness and a 44.1%increase in tensile strength compared to AA 2014 alloy.In addition,it has been detected that wear resistance of hybrid composite pin(containing 20 wt%cumulative reinforcement)is higher than that of other stir cast wear test pins during the whole range of applied loads.Fractured surfaces of tensile specimens showed ductile fracture in the AA 2014 matrix and mixed mode for hybrid composites.Worn surfaces obtained employing higher applied load indicated abrasive wear with little plastic deformation for hybrid composites and dominant adhesive wear for matrix alloy.Hence,the superior mechanical and tribological performance of hybrid composites can be attributed to dual reinforcement particles being dispersed well and the effective transmission of load at this specific composition.
文摘Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.
基金Science&Engineering Research Board(SERB),DST,for its financial assistance received from the project(vide sanction order no.SPG/2021/003383)。
文摘In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations(0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite(γ) and delta-ferrite(δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both(within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle,and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts;it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft.
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
基金the National Natural Science Foundation of China(Grant number 51771178)Shaanxi Outstanding Youth Fund project(Grant number 2021JC-45)+2 种基金Key international cooperation projects in Shaanxi Province(Grant number 2020KWZ-007)the Major Program of Science and Technology in Shaanxi Province(Grant number20191102006)Open Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant number 32115019)。
文摘The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.
基金support from the National Natural Science Foundation of China (No.52172407 and No.U19A20110)the Natural Science Foundation of Sichuan Province (No.2022NSFSC0415).
文摘Railway accidents,particularly serious derailments,can lead to catastrophic consequences.Therefore,it is essential to prevent derailment escalation to reduce the likelihood of severe derailments.Train post-derailment behaviours and containment methods play a critical role in preventing derailment escalation and providing passive safety protection and accident prevention in the event of a derailment.However,despite the increasing attention on this field from academia and industry in recent years,there is a lack of systematic exploration and summarization of emerging applications and containment methods in train post-derailment research.For this reason,this paper presents a comprehensive review of existing studies on train post-derailment behaviours,encompassing various topics such as post-derailment contact-impact models,dynamic modelling and simulation techniques,and the primary factors influencing post-derailment behaviours.Significantly,this review introduces and elucidates substitute guidance mechanisms(SGMs),which serve as railway-specific passive safety protection and accident prevention measures.The various types of SGMs are depicted,and their ongoing developments and applications are explored in depth.The review additionally points out several unresolved challenges including the adverse effects of SGMs,and proposes future research directions to advance the theoretical understanding and practical application of train post-derailment behaviours and containment methods.This review seeks to be a valuable reference for railway industry professionals in preventing catastrophic derailment consequences through post-derailment containment methods.
基金funding this study and technical support,and also to CNPQ(Grant Number 315304/2018-9)CAPES(Grant Number 88887.892546/2023-00),which funded partially this project.
文摘Railway infrastructure relies on the dynamic interaction between wheels and rails;thus,assessing wheel wear is a critical aspect of maintenance and safety.This paper focuses on the wheel-rail wear indicator T-gamma(Tγ).Amidst its use,it becomes apparent that Tγ,while valuable,fails to provide a comprehensive reflection of the actual material removal and actual contact format,which means that using only Tγas a target for optimization of profiles is not ideal.In this work,three different freight wagons are evaluated:a meter-gauge and a broad-gauge heavy haul vehicles from South American railways,and a standard-gauge freight vehicle operated in Europe,with different axle loads and dissimilar new wheel/rail profiles.These vehicles are subjected to comprehensive multibody simulations on various tracks.The simulations aimed to elucidate the intricate relationship between different wear indicators:Tγ,wear index,material removal,and maximum wear depth,under diverse curves,non-compensated lateral accelerations(A_(nc)),and speeds.Some findings showed a correlation of 0.96 between Tγand wear depth and 0.82 between wear index and material removed for the outer wheel.From the results,the Tγis better than the wear index to be used when analyzing wear depth while the wear index is more suited to foresee the material lost.The results also show the low influence of A_(nc)on wear index and Tγ.By considering these factors together,the study aims to improve the understanding of wheel-rail wear by selecting the best wear analysis approaches based on the effectiveness of each parameter.
基金Supported by National Natural Science Foundation of China (Grant No.51935007)。
文摘To ensure an accurate selection of rolling guide shoe materials,an analysis of the intricate relationship between linear speed and wear is imperative.Finite element simulations and experimental measurements are employed to evaluate four distinct types of materials:polyurethane,rubber,polytetrafluoroethylene(PTFE),and nylon.The speed-index of each material is measured,serving as a preparation for subsequent analysis.Furthermore,the velocity-wear factor is determined,providing insights into the resilience and durability of the material across varying speeds.Additionally,a wear model tailored specifically for viscoelastic bodies is explored,which is pivotal in understanding the wear mechanisms within the material.Leveraging this model,wear predictions are made under higher speed conditions,facilitating the choice of material for rolling guide shoes.To validate the accuracy of the model,the predicted degree of wear is compared with experimental data,ensuring its alignment with both theoretical principles and real-world performance.This comprehensive analysis has verified the effectiveness of the model in the selection of materials under high-speed conditions,thereby offering confidence in its reliability and ensuring optimal performance.
基金Supported by National Natural Science Foundation of China (Grant No.52275061)。
文摘Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term operation.Both profile shift and tooth surface wear(TSW)can impact the meshing characteristics by altering the involute tooth profile.In this study,a tooth stiffness model of spur gears that incorporates profile shift,TSW,tooth deformation,tooth contact deformation,fillet-foundation deformation,and gear body structure coupling is established.This model efficiently and accurately determines the time-varying mesh stiffness(TVMS).Additionally,an improved wear depth prediction method for spur gears is developed,which takes into consideration the mutually prime teeth numbers and more accurately reflects actual gear meshing conditions.Results show that consideration of the mutual prime of teeth numbers will have a certain impact on the TSW process.Furthermore,the finite element method(FEM)is employed to accurately verify the values of TVMS and load sharing ratio(LSR)of profile-shifted gears and worn gears.This study quantitatively analyzes the effect of profile shift on the surface wear process,which suggests that gear profile shift can partially alleviate the negative effects of TSW.The contribution of this study provides valuable insights into the design and maintenance of spur gear systems.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
文摘Medicinal leeches have been utilized in therapy for thousands of years. However, the adaptation physiology between leeches and hosts is not fully understand. To disclose the molecular mechanisms of adaptation between leech and host, the body transcriptomes of hunger and fed blood-sucking Poecilobdella javanica, Haemadipsa cavatuses, and Hirudo nipponia leeches were obtained by RNA sequencing, after comparison, a stratified unigenes group was obtained, which closely correlated to body distension. In the group, Rfamide receptor decreased significantly (P < 0.05) while serotonin receptor increased significantly (P < 0.05). Moreover, four KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including cardiac muscle contraction, complement and coagulation cascades, renin-angiotensin system, and hypertrophic cardiomyopathy were significantly enriched. The unigenes annotation, neuroregulators correlation analysis and induced function of the KEGG pathways, were consistently supported the same result as: vasoconstriction and systole reaction enhance in hunger leeches and vice versa vasodilation and diastole increase in fed leeches, meanwhile, Interspecific comparison and correlative analyses of physiological function showed that the strongest reaction of induced heart failure from four KEGG occur in strongest reaction of systole in hungry P. javanica and in strongest reaction of diastole in fed H. nipponia. Overall, heart failure is likely a physiological function involved in feeding behaviour.
文摘The continuous pursuit for a better quality of life promotes continuous advancements in intelligent technology.Flexible wearable and implantable bioelectronics have emerged as an innovative complement to rigid material-based electronic devices[1-3].Due to their distinct advantages in terms of ductile,ultrathin,and biocompatible features,these elastic and soft bioelectronic devices can be seamlessly mounted onto various real or artificial tissues and organs.
基金The study was supported by the Transverse Project of Zhongshan Hospital and Hangzhou Xinjing Science and Technology(XH,H2022-009)National Key Research and Development Program of China(XH,2023YFC2506200)Shanghai Clinical Research Center for Interventional Medicine(JBG,19MC1910300).
文摘Background The presence of mental health conditions is pervasive in patients who experienced acute myocardial infarction(AMI),significantly disrupting their recovery.Providing timely and easily accessible psychological interventions using virtual reality-based cognitive-behavioural therapy(VR-CBT)could potentially improve both acute and long-term symptoms affecting their mental health.Aims We aim to examine the effectiveness of VR-CBT on anxiety symptoms in patients with AMI who were admitted to the intensive care unit(ICU)during the acute stage of their illness.Methods In this single-blind randomised clinical trial,participants with anxiety symptoms who were admitted to the ICU due to AMI were continuously recruited from December 2022 to February 2023.Patients who were Han Chinese aged 18-75 years were randomly assigned(1:1)via block randomisation to either the VR-CBT group to receive VR-CBT in addition to standard mental health support,or the control group to receive standard mental health support only.VR-CBT consisted of four modules and was delivered at the bedside over a 1-week period.Assessments were done at baseline,immediately after treatment and at 3-month follow-up.The intention-to-treat analysis began in June 2023.The primary outcome measure was the changes in anxiety symptoms as assessed by the Hamilton Anxiety Rating Scale(HAM-A).Results Among 148 randomised participants,70 were assigned to the VR-CBT group and 78 to the control group.The 1-week VR-CBT intervention plus standard mental health support significantly reduced the anxiety symptoms compared with standard mental health support alone in terms of HAM-A scores at both post intervention(Cohen’s d=−1.27(95%confidence interval(CI):−1.64 to−0.90,p<0.001)and 3-month follow-up(Cohen’s d=−0.37(95%CI:−0.72 to−0.01,p=0.024).Of the 70 participants who received VR-CBT,62(88.6%)completed the entire intervention.Cybersickness was the main reported adverse event(n=5).Conclusions Our results indicate that VR-CBT can significantly reduce post-AMI anxiety at the acute stage of the illness;the improvement was maintained at the 3-month follow-up.Trial registration number The trial was registered at www.chictr.org.cn with the identifier:ChiCTR2200066435.
基金the National Institute of Mental Health at the US National Institutes of Health(grant number:R01 MH111859).
文摘Background Little is known about the association between stressors(especially positive stressors)during pregnancy and postpartum depression and anxiety.Aims We investigated the association between positive and negative stress events during different stages of pregnancy and postpartum mental health outcomes among low-income pregnant women with symptoms of anxiety in Pakistan and evaluated whether an intervention based on cognitive behavioural therapy(CBT)had a regulatory effect.Methods Participants were 621 pregnant Pakistani women with mild anxiety.Using the Pregnancy Experience Scale-Brief Version,six scores were created to assess positive and negative stressors.We performed a multivariate linear regression to examine whether these six scores,measured both at baseline and in the third trimester,were associated with postpartum anxiety and depressive symptoms.The effect of the intervention on this relationship was examined by adding an interaction term to the regression model.Results Hassles frequency measured in the third trimester was positively associated with depression(B=0.22,95%confidence interval(Cl):0.09 to 0.36)and anxiety(B=0.19,95%Cl:0.08to 0.30).At the same timepoint,uplifts intensity was negatively associated with symptoms of depression(B=-0.82,95%Cl:1.46 to-0.18)and anxiety(B=-0.70,95%Cl:-1.25 to-0.15),whereas hassles intensity was positively related to symptoms of depression(B=1.02,95%Cl:0.36 to 1.67)and anxiety(B=0.90,95%Cl:0.34 to 1.47).The intensity ratio of hassles to uplifts reported in the third trimester was positively related to both depression(B=1.40,95%Cl:0.59 to 2.20)and anxiety(B=1.26,95%Cl:0.57 to 1.96).The intervention strengthened the overall positive effects of uplfts and the negative effects of hassles.Pregnancy experiences at baseline during early pregnancy to mid-pregnancy were not associated with mental health outcomes.Conclusions Stressors in the third trimester but not earlier in pregnancy were associated with postpartum symptoms of anxiety and depression.The CBT intervention modified the association between pregnancy stressors and postpartum mental health outcomes.Programmes that promote positive experiences and reduce negative experiences,especially in late pregnancy,may mitigate postpartum mental health consequences.
基金funded by R01HL137734 from the National Heart,Lung,and Blood Institutesupported by F30HL149335 from the National Heart,Lung,and Blood Institute+3 种基金supported by NIH grant 2T32HL 120823supported by K23HL161432 from the National Heart,Lung,and Blood Institutesupported by R01 HL137734supported by R01HL126911,R01HL137734,R01HL137794,R01HL135219,R01HL136660,U54HL143541,and 1U01HL146382 from the National Heart,Lung,and Blood Institute.
文摘BACKGROUND Smartwatches have become readily accessible tools for detecting atrial fibrillation(AF).There remains limited data on how they affect psychosocial outcomes and engagement in older adults.We examine the health behavior outcomes of stroke survivors prescribed smartwatches for AF detection stratified by age.METHODS We analyzed data from the Pulsewatch study,a randomized controlled trial that enrolled patients(≥50 years)with a history of stroke or transient ischemic attack and CHA2DS2-VASc≥2.Intervention participants were equipped with a cardiac patch monitor and a smartwatch-app dyad,while control participants wore the cardiac patch monitor for up to 44 days.We evaluated health behavior parameters using standardized tools,including the Consumer Health Activation Index,the Generalized Anxiety Disorder questionnaire,the 12-Item Short Form Health Survey,and wear time of participants categorized into three age groups:Group 1(ages 50-60),Group 2(ages 61-69),and Group 3(ages 70-87).We performed statistical analysis using a mixedeffects repeated measures linear regression model to examine differences amongst age groups.RESULTS Comparative analysis between Groups 1,2 and 3 revealed no significant differences in anxiety,patient activation,perception of physical health and wear time.The use of smartwatch technology was associated with a decrease in perception of mental health for Group 2 compared to Group 1(β=-3.29,P=0.046).CONCLUSION Stroke survivors demonstrated a willingness to use smartwatches for AF monitoring.Importantly,among these study participants,the majority did not experience negative health behavior outcomes or decreased engagement as age increased.
文摘Background: Adolescents in developing countries have limited knowledge about the prevention of STIs and unwanted pregnancies. In several African countries, risky sexual behaviour persists, including early sexual debut, multiple sexual partners, economic and sexual exchange, and low condom and contraceptive use. The purpose of this study is to assess the sexual and reproductive health knowledge and behaviour of adolescents in rural Burkina Faso in order to improve their sexual and reproductive health. Method: This was a descriptive cross-sectional study with prospective data collection conducted from 07 March to 04 April 2022 in the area of the Demographic and Health Surveillance System of the Nouna Research Centre. A questionnaire was administered to a randomly selected sample of 1202 adolescents. Results: The mean age of the adolescents was 14.1 years and 56.6% were male. Only 58.2% of the adolescents had ever heard of HIV/AIDS. Of these, 95.7% did not know their HIV status. In addition, 15.8% had ever had sexual intercourse and 2.4% had been sexually active at an early age. Almost 45% had not used any contraceptive method the last time they had sex. Condoms were the most frequently used contraceptive method (47.4%). Among teenagers, 27.6% had been pregnant at least once, 7.3% were married and the average age at marriage was 18.45 years. Almost 7% (6.9%) of teenagers had more than one sexual partner. Conclusion: Adolescents have limited knowledge about reproductive health. Risky sexual behaviour persists. Awareness campaigns need to be intensified to improve their sexual and reproductive health.
基金Funding by Ministerium für Wirtschaft,Innovation,Digitalisierung und Energie des Landes Nordrhein-Westfalen。
文摘This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.
基金Supported by Research Grants Council of the Government of the Hong Kong Special Administrative Region of China (Grant No.15203620)Research and Innovation Office of The Hong Kong Polytechnic University of China (Grant Nos.BBXN,1-W308)+1 种基金Research Studentships (Grant No.RH3Y)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202315)。
文摘Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their overall effectiveness.In order to improve the tool life and reduce wear,this study introduces an emerging method called magnetic field-assisted batch polishing(MABP)for simultaneously polishing multiple ceramic cutting inserts.Several polishing experiments were conducted under different conditions,and the wear characteristics were clarified by cutting S136H steel.The results showed that after 15 min of polishing,the surface roughness at the flank face,edge,and nose of the inserts was reduced to below 2.5 nm,6.25 nm,and 45.8 nm,respectively.Furthermore,the nose radii of the inserts did not change significantly,and there were no significant changes in the weight percentage of elements before and after polishing.Additionally,the tool life of the batch polished inserts was found to be up to 1.75 times longer than that of unpolished inserts.These findings suggest that the MABP method is an effective way to mass polish ceramic cutting inserts,resulting in significantly reduced tool wear.Furthermore,this novel method offers new possibilities for polishing other tools.
基金Beijing Postdoctoral Research Activity Funding Project,Grant/Award Number:2022-ZZ-097Beijing Municipal Natural Science Foundation,Grant/Award Number:8182048。
文摘During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.